Decreased dorsal attention network homogeneity as a potential neuroimaging biomarker for major depressive disorder

被引:18
作者
Gao, Yujun [1 ]
Guo, Xin [1 ]
Zhong, Yi [2 ,3 ]
Liu, Xiaoxin [2 ,3 ]
Tian, Shanshan [2 ,3 ]
Deng, Jiahui [2 ,3 ]
Lin, Xiao [2 ,3 ]
Bao, Yanpin [4 ,5 ]
Lu, Lin [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]
Wang, Gaohua [1 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Psychiat, Wuhan 430000, Peoples R China
[2] Peking Univ, Peking Univ Sixth Hosp, Inst Mental Hlth, NHC Key Lab Mental Hlth, Beijing 100191, Peoples R China
[3] Peking Univ, Peking Univ Sixth Hosp, Natl Clin Res Ctr Mental Disorders, Beijing 100191, Peoples R China
[4] Peking Univ, Natl Inst Drug Dependence, Beijing 100191, Peoples R China
[5] Peking Univ, Beijing Key Lab Drug Dependence, Beijing 100191, Peoples R China
[6] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
[7] Peking Univ, PKU IDG McGovern Inst Brain Res, Beijing 100871, Peoples R China
[8] Peking Univ Sixth Hosp, Inst Mental Hlth, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Major depressive disorder; Dorsal attention network; Biomarker; Network homogeneity; Support vector machine; ABNORMAL NEURAL ACTIVITY; DEFAULT-MODE; FUNCTIONAL CONNECTIVITY; TREATMENT-RESISTANT; SCHIZOPHRENIA; 1ST-EPISODE; EFFICIENCY; SUBTYPES; REGIONS;
D O I
10.1016/j.jad.2023.03.080
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Gaining insight into abnormal functional brain network homogeneity (NH) has the potential to aid efforts to target or otherwise study major depressive disorder (MDD). The NH of the dorsal attention network (DAN) in first-episode treatment-naive MDD patients, however, has yet to be studied. As such, the present study was developed to explore the NH of the DAN in order to determine the ability of this parameter to differentiate between MDD patients and healthy control (HC) individuals.Methods: This study included 73 patients with first-episode treatment-naive MDD and 73 age-, gender-, and educational level-matched healthy controls. All participants completed the attentional network test (ANT), Hamilton Rating Scale for Depression (HRSD), and resting-state functional magnetic resonance imaging (rs-fMRI) analyses. A group independent component analysis (ICA) was used to identify the DAN and to compute the NH of the DAN in patients with MDD. Spearman's rank correlation analyses were used to explore relationships between significant NH abnormalities in MDD patients, clinical parameters, and executive control reaction time.Results: Relative to HCs, patients exhibited reduced NH in the left supramarginal gyrus (SMG). Support vector machine (SVM) analyses and receiver operating characteristic curves indicated that the NH of the left SMG could be used to differentiate between HCs and MDD patients with respective accuracy, specificity, sensitivity, and AUC values of 92.47 %, 91.78 %, 93.15 %, and 65.39 %. A significant positive correlation was observed between the left SMG NH values and HRSD scores among MDD patients.Conclusions: These results suggest that NH changes in the DAN may offer value as a neuroimaging biomarker capable of differentiating between MDD patients and healthy individuals.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 55 条
[1]  
Bains Navneet., 2022, StatPearls [Internet]
[2]  
Bertoldi I.F., 2020, INT PHYS MED REHABIL, V5, P53, DOI [10.15406/ipmrj.2020.05.00228, DOI 10.15406/IPMRJ.2020.05.00228]
[3]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[4]   Diurnal mood variation symptoms in major depressive disorder associated with evening chronotype: Evidence from a neuroimaging study [J].
Chen, Zhilu ;
Zhao, Shuai ;
Tian, Shui ;
Yan, Rui ;
Wang, Huan ;
Wang, Xumiao ;
Zhu, Rongxin ;
Xia, Yi ;
Yao, Zhijian ;
Lu, Qing .
JOURNAL OF AFFECTIVE DISORDERS, 2022, 298 :151-159
[5]   A network meta-analysis of the effects of psychotherapies, pharmacotherapies and their combination in the treatment of adult depression [J].
Cuijpers, Pim ;
Noma, Hisashi ;
Karyotaki, Eirini ;
Vinkers, Christiaan H. ;
Cipriani, Andrea ;
Furukawa, Toshi A. .
WORLD PSYCHIATRY, 2020, 19 (01) :92-107
[6]   Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data [J].
Deng, Fei ;
Huang, Jibing ;
Yuan, Xiaoling ;
Cheng, Chao ;
Zhang, Lanjing .
LABORATORY INVESTIGATION, 2021, 101 (04) :430-441
[7]   Impaired robust interhemispheric function integration of depressive brain from REST-meta-MDD database in China [J].
Deng, Ke ;
Yue, Ji-Hui ;
Xu, Jian ;
Ma, Ping-Ping ;
Chen, Xiao ;
Li, Le ;
Bai, Tong-Jian ;
Bo, Qi-Jing ;
Cao, Jun ;
Chen, Guan-Mao ;
Chen, Ning-Xuan ;
Chen, Wei ;
Cheng, Chang ;
Cui, Xi-Long ;
Duan, Jia ;
Fang, Yi-Ru ;
Gong, Qi-Yong ;
Guo, Wen-Bin ;
Hou, Zheng-Hua ;
Hu, Lan ;
Kuang, Li ;
Li, Feng ;
Li, Tao ;
Liu, Yan-Song ;
Liu, Zhe-Ning ;
Long, Yi-Cheng ;
Luo, Qing-Hua ;
Meng, Hua-Qing ;
Peng, Dai-Hui ;
Qiu, Hai-Tang ;
Qiu, Jiang ;
Shi, Yu-Shu ;
Si, Tian-Mei ;
Tang, Yan-Qin ;
Wang, Fei ;
Wang, Kai ;
Wang, Li ;
Wang, Xiang ;
Wang, Ying ;
Wu, Xiao-Ping ;
Wu, Xin-Ran ;
Xie, Chun-Ming ;
Xie, Guang-Rong ;
Xie, Hai-Yan ;
Xie, Peng ;
Yang, Hong ;
Yang, Jian ;
Yao, Jia-Shu ;
Yao, Shu-Qiao ;
Yin, Ying-Ying .
BIPOLAR DISORDERS, 2022, 24 (04) :400-411
[8]   Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states [J].
Dixon, Matthew L. ;
Andrews-Hanna, Jessica R. ;
Spreng, R. Nathan ;
Irving, Zachary C. ;
Mills, Caitlin ;
Girn, Manesh ;
Christoff, Kalina .
NEUROIMAGE, 2017, 147 :632-649
[9]   Resting-state connectivity biomarkers define neurophysiological subtypes of depression [J].
Drysdale, Andrew T. ;
Grosenick, Logan ;
Downar, Jonathan ;
Dunlop, Katharine ;
Mansouri, Farrokh ;
Meng, Yue ;
Fetcho, Robert N. ;
Zebley, Benjamin ;
Oathes, Desmond J. ;
Etkin, Amit ;
Schatzberg, Alan F. ;
Sudheimer, Keith ;
Keller, Jennifer ;
Mayberg, Helen S. ;
Gunning, Faith M. ;
Alexopoulos, George S. ;
Fox, Michael D. ;
Pascual-Leone, Alvaro ;
Voss, Henning U. ;
Casey, B. J. ;
Dubin, Marc J. ;
Liston, Conor .
NATURE MEDICINE, 2017, 23 (01) :28-38
[10]   Testing the efficiency and independence of attentional networks [J].
Fan, J ;
McCandliss, BD ;
Sommer, T ;
Raz, A ;
Posner, MI .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2002, 14 (03) :340-347