Toward Best Practices for Imaging Transcriptomics of the Human Brain

被引:49
作者
Arnatkeviciute, Aurina [1 ]
Markello, Ross D. [2 ]
Fulcher, Ben D. [3 ]
Misic, Bratislav [2 ]
Fornito, Alex [1 ]
机构
[1] Monash Univ, Turner Inst Brain & Mental Hlth, Sch Psychol Sci, Melbourne, Vic, Australia
[2] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[3] Univ Sydney, Sch Phys, Sydney, NSW, Australia
基金
英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; GENE-EXPRESSION; STRUCTURAL COVARIANCE; NETWORKS; CONNECTIVITY; ORGANIZATION; INTEGRATION; SIGNATURES; GRADIENTS; VARIANTS;
D O I
10.1016/j.biopsych.2022.10.016
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Modern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses. Our aim is to facilitate the development of standardized and reproducible approaches for this rapidly growing field. We identify sources of methodological variability, key choices that can affect findings, and considerations for mitigating false positive and/or spurious results. Finally, we provide an overview of freely available open-source toolboxes implementing current best-practice procedures across all 3 analysis phases.
引用
收藏
页码:391 / 404
页数:14
相关论文
共 130 条
[31]   Longitudinal brain connectivity changes and clinical evolution in Parkinson's disease [J].
Filippi, Massimo ;
Basaia, Silvia ;
Sarasso, Elisabetta ;
Stojkovic, Tanja ;
Stankovic, Iva ;
Fontana, Andrea ;
Tomic, Aleksandra ;
Piramide, Noemi ;
Stefanova, Elka ;
Markovic, Vladana ;
Kostic, Vladimir S. ;
Agosta, Federica .
MOLECULAR PSYCHIATRY, 2021, 26 (09) :5429-5440
[32]   Gene Networks Show Associations with Seed Region Connectivity [J].
Forest, Marie ;
Iturria-Medina, Yasser ;
Goldman, Jennifer S. ;
Kleinman, Claudia L. ;
Lovato, Amanda ;
Klein, Kathleen Oros ;
Evans, Alan ;
Ciampi, Antonio ;
Labbe, Aurelie ;
Greenwood, Celia M. T. .
HUMAN BRAIN MAPPING, 2017, 38 (06) :3126-3140
[33]   Bridging the Gap between Connectome and Transcriptome [J].
Fornito, Alex ;
Arnatkeviciute, Aurina ;
Fulcher, Ben D. .
TRENDS IN COGNITIVE SCIENCES, 2019, 23 (01) :34-50
[34]   The connectomics of brain disorders [J].
Fornito, Alex ;
Zalesky, Andrew ;
Breakspear, Michael .
NATURE REVIEWS NEUROSCIENCE, 2015, 16 (03) :159-172
[35]  
Fornito Alex, 2012, Front Psychiatry, V3, P32, DOI 10.3389/fpsyt.2012.00032
[36]   Genetic Influences on Cost-Efficient Organization of Human Cortical Functional Networks [J].
Fornito, Alex ;
Zalesky, Andrew ;
Bassett, Danielle S. ;
Meunier, David ;
Ellison-Wright, Ian ;
Yuecel, Murat ;
Wood, Stephen J. ;
Shaw, Karen ;
O'Connor, Jennifer ;
Nertney, Deborah ;
Mowry, Bryan J. ;
Pantelis, Christos ;
Bullmore, Edward T. .
JOURNAL OF NEUROSCIENCE, 2011, 31 (09) :3261-3270
[37]   Regional transcriptional architecture of Parkinson's disease pathogenesis and network spread [J].
Freeze, Benjamin ;
Pandya, Sneha ;
Zeighami, Yashar ;
Raj, Ashish .
BRAIN, 2019, 142 :3072-3085
[38]   Relationships between Gene Expression and Brain Wiring in the Adult Rodent Brain [J].
French, Leon ;
Pavlidis, Paul .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (01)
[39]  
Fulcher B, 2021, BENFULCHER GENECATEG
[40]   Overcoming false-positive gene-category enrichment in the analysis of spatially resolved transcriptomic brain atlas data [J].
Fulcher, Ben D. ;
Arnatkeviciute, Aurina ;
Fornito, Alex .
NATURE COMMUNICATIONS, 2021, 12 (01)