Multi-Omics Analyses Reveal the Mechanisms of Early Stage Kidney Toxicity by Diquat

被引:8
|
作者
Zhang, Huazhong [1 ,2 ]
Zhang, Jinsong [1 ,2 ]
Li, Jinquan [1 ,2 ]
Mao, Zhengsheng [2 ]
Qian, Jian [3 ]
Zong, Cheng [4 ]
Sun, Hao [1 ,2 ]
Yuan, Beilei [4 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Dept Emergency, Nanjing 210029, Peoples R China
[2] Nanjing Med Univ, Inst Poisoning, Nanjing 211100, Peoples R China
[3] Nanjing Med Univ, Affiliated Hosp 1, Dept Urol, Nanjing 210029, Peoples R China
[4] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
diquat; kidney injury; multi-omics; fatty acid metabolism; PPAR signaling pathway;
D O I
10.3390/toxics11020184
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Diquat (DQ), a widely used bipyridyl herbicide, is associated with significantly higher rates of kidney injuries compared to other pesticides. However, the underlying molecular mechanisms are largely unknown. In this study, we identified the molecular changes in the early stage of DQ-induced kidney damage in a mouse model through transcriptomic, proteomic and metabolomic analyses. We identified 869 genes, 351 proteins and 96 metabolites that were differentially expressed in the DQ-treated mice relative to the control mice (p < 0.05), and showed significant enrichment in the PPAR signaling pathway and fatty acid metabolism. Hmgcs2, Cyp4a10, Cyp4a14 and Lpl were identified as the major proteins/genes associated with DQ-induced kidney damage. In addition, eicosapentaenoic acid, linoleic acid, palmitic acid and (R)-3-hydroxybutyric acid were the major metabolites related to DQ-induced kidney injury. Overall, the multi-omics analysis showed that DQ-induced kidney damage is associated with dysregulation of the PPAR signaling pathway, and an aberrant increase in Hmgcs2 expression and 3-hydroxybutyric acid levels. Our findings provide new insights into the molecular basis of DQ-induced early kidney damage.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa
    Huang, Xiuzheng
    Liu, Lei
    Qiang, Xiaojing
    Meng, Yuanfa
    Li, Zhiyong
    Huang, Fan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [32] Multi-omics analyses on host pathophysiology in cancers
    Kawaoka, Shinpei
    CANCER SCIENCE, 2024, 115 : 753 - 753
  • [33] Development of bioinformatics and multi-omics analyses in organoids
    Ha, Doyeon
    Kong, JungHo
    Kim, Donghyo
    Lee, Kwanghwan
    Lee, Juhun
    Park, Minhyuk
    Ahn, Hyunsoo
    Oh, Youngchul
    Kim, Sanguk
    BMB REPORTS, 2023, 56 (01) : 43 - 48
  • [34] Multi-omics analyses reveal interactions between the skin microbiota and skin metabolites in atopic dermatitis
    Huang, Kaikai
    Li, Fang
    Liu, Yingyao
    Liang, Baoying
    Qu, Pinghua
    Yang, Linlin
    Han, Shanshan
    Li, Wenjun
    Mo, Xiumei
    Dong, Lei
    Lin, Ying
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [35] Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health
    Shuai, Menglei
    Zuo, Luo-Shi-Yuan
    Miao, Zelei
    Gou, Wanglong
    Xu, Fengzhe
    Jiang, Zengliang
    Ling, Chu-wen
    Fu, Yuanqing
    Xiong, Feng
    Chen, Yu-ming
    Zheng, Ju-Sheng
    EBIOMEDICINE, 2021, 66
  • [36] Multi-omics analyses reveal spatial heterogeneity in primary and metastatic oesophageal squamous cell carcinoma
    Huang, Haitao
    Li, Na
    Liang, Yingkuan
    Li, Rutao
    Tong, Xing
    Xiao, Jinyuan
    Tang, Hongzhen
    Jiang, Dong
    Xie, Kai
    Fang, Chen
    Chen, Shaomu
    Li, Guangbin
    Wang, Bin
    Wang, Jiaqian
    Luo, Haitao
    Guo, Lingchuan
    Ma, Haitao
    Jiang, Wei
    Feng, Yu
    CLINICAL AND TRANSLATIONAL MEDICINE, 2023, 13 (11):
  • [37] Integrative multi-omics analyses reveal vesicle transport as a potential target for thoracic aortic aneurysm
    Lei, Jiahao
    Qiu, Peng
    Wu, Zhaoyu
    Ding, Angang
    Hu, Jiateng
    Hou, Jingli
    Jiang, Yihong
    Pu, Hongji
    Huang, Qun
    Zhang, Xing
    Li, Bo
    Wang, Xin
    Ye, Kaichuang
    Xu, Zhijue
    Lu, Xinwu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [38] Editorial: Characterization of esophageal cancer molecular signatures and mechanisms using multi-omics analyses
    Xu, Yuanji
    Huang, Wei
    Tamadon, Amin
    Lin, Yao
    Ye, Guodong
    FRONTIERS IN GENETICS, 2023, 14
  • [39] Integrated Multi-omics Analysis to Reveal Underlying Protective Mechanisms of Delaying Cognitive Decline in Centenarians
    Leshchyk, Anastasia
    Monti, Stefano
    Andersen, Stacy
    Perls, Tomas T.
    Sebastiani, Paola
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 509 - 509
  • [40] Multi-omics approaches to study platelet mechanisms
    Solari, Fiorella A.
    Krahn, Daniel
    Swieringa, Frauke
    Verhelst, Steven
    Rassaf, Tienush
    Tasdogan, Alpaslan
    Zahedi, Rene P.
    Lorenz, Kristina
    Renne, Thomas
    Heemskerk, Johan W. M.
    Sickmann, Albert
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2023, 73