Multicontact formulation for non-conservative field theories

被引:8
作者
de Leon, Manuel [1 ,2 ]
Gaset, Jordi [3 ]
Munoz-Lecanda, Miguel C. [4 ]
Rivas, Xavier [3 ]
Roman-Roy, Narciso [4 ]
机构
[1] CSIC, Inst Ciencias Matemat, Madrid, Spain
[2] Real Acad Ciencias, Madrid, Spain
[3] Univ Int La Rioja, Escuela Super Ingn & Tecnol, Logrono, Spain
[4] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
关键词
classical field theory; Lagrangian and Hamiltonian formalism; non-conservative system; multisymplectic structure; contact structure; HAMILTONIAN-FORMALISM; GEOMETRY; MANIFOLDS; VARIABLES; EQUATIONS; CALCULUS;
D O I
10.1088/1751-8121/acb575
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new geometric structure inspired by multisymplectic and contact geometries, which we call multicontact structure, is developed to describe non-conservative classical field theories. Using the differential forms that define this multicontact structure as well as other geometric elements that are derived from them while assuming certain conditions, we can introduce, on the multicontact manifolds, the variational field equations which are stated using sections, multivector fields, and Ehresmann connections on the adequate fiber bundles. Furthermore, it is shown how this multicontact framework can be adapted to the jet bundle description of classical field theories; the field equations are stated in the Lagrangian and the Hamiltonian formalisms both in the regular and the singular cases.
引用
收藏
页数:44
相关论文
共 89 条
  • [11] Contact Hamiltonian mechanics
    Bravetti, Alessandro
    Cruz, Hans
    Tapias, Diego
    [J]. ANNALS OF PHYSICS, 2017, 376 : 17 - 39
  • [12] On the geometry of multisymplectic manifolds
    Cantrijn, F
    Ibort, A
    De León, M
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 : 303 - 330
  • [13] Cantrijn F., 1996, Rend. Sem. Mat. Univ. Politec. Torino, V54, P225
  • [14] Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y
  • [15] Nonstandard Hamiltonian structures of the Lienard equation and contact geometry
    Carinena, Jose F.
    Guha, Partha
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
  • [16] Cartan E., 1922, LECONS INVARIANTS IN
  • [17] Contact manifolds and dissipation, classical and quantum
    Ciaglia, F. M.
    Cruz, H.
    Marmo, G.
    [J]. ANNALS OF PHYSICS, 2018, 398 : 159 - 179
  • [18] de Almeida U N., 2018, THESIS U SAO PAULO
  • [19] De Donder T., 1935, ThOrie Invariantive du Calcul Des Variations
  • [20] Symmetries in classical field theory
    De León, M
    De Diego, DM
    Santamaría-Merino, A
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2004, 1 (05) : 651 - 710