A Determination of the Blowup Solutions to the Focusing NLS with Mass Equal to the Mass of the Soliton

被引:4
作者
Dodson, Benjamin [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; POSITIVE SOLUTIONS; MINIMAL-MASS; SCATTERING; EXISTENCE; UNIQUENESS; STABILITY;
D O I
10.1007/s40818-022-00142-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove rigidity for blowup solutions to the focusing, mass-critical nonlinear Schrodinger equation in dimensions 2 <= d <= 15 with mass equal to the mass of the soliton. We prove that the only such solutions are the solitons and the pseudoconformal transformation of the solitons. We show that this implies a Liouville result for the nonlinear Schrodinger equation.
引用
收藏
页数:86
相关论文
共 41 条
[1]  
Benjamin Dodson, 2016, AM J MATH, V138, P531, DOI [10.1353/ajm.2016.00161341.35149, DOI 10.1353/AJM.2016.00161341.35149]
[2]   AN ODE APPROACH TO THE EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-LINEAR PROBLEMS IN RN [J].
BERESTYCKI, H ;
LIONS, PL ;
PELETIER, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) :141-157
[3]  
Berestycki Henri., 1978, C R ACAD SCI PARIS S, V287, pA503
[4]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[5]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111
[7]  
Colliander J, 2002, MATH RES LETT, V9, P659
[8]   Asymptotic Stability of High-dimensional Zakharov-Kuznetsov Solitons [J].
Cote, Raphael ;
Munoz, Claudio ;
Pilod, Didier ;
Simpson, Gideon .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :639-710
[9]  
Dodson B., 2019, Defocusing nonlinear Schrodinger equations, V217
[10]  
Dodson B, 2021, Arxiv, DOI arXiv:2104.11690