Efficient and Broadband Trident Spot-Size Convertor for Thin-Film Lithium Niobate Integrated Device

被引:12
作者
Liang, Xuerui [1 ,2 ,3 ]
Fu, Li [2 ]
Yu, Qianchen [2 ]
Xue, Zhenfeng [2 ,4 ]
Shi, Xiaodong [5 ]
Lu, Yaoqin [5 ]
Chen, Honggang [2 ]
Zhang, Bo [2 ]
Luo, Yong [2 ]
Hu, Qianggao [2 ]
Ou, Haiyan [5 ]
Ma, Weidong [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Accelink Technol Co Ltd, Wuhan 430205, Peoples R China
[3] Opt Valley Lab, Wuhan 430074, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[5] Tech Univ Denmark, Dept Elect & Photon Engn, DK-2800 Lyngby, Denmark
关键词
Edge Coupler; Thin-film Lithium Niobate; Spot size convertor; MODULATOR; COUPLER;
D O I
10.1109/LPT.2022.3221195
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thin-film lithium niobate on insulator (LNOI) has recently emerged as a promising platform for high-speed optical communication devices. For practical applications, an efficient, polarization-insensitive, misalignment-tolerant and broadband fiber-to-chip optical coupler is necessary. In this letter, we present a fiber-to-chip edge coupler based on trident spot-size convertor (SSC). Experiment shows 1.18/1.10 dB per facet low loss at 1550 nm for TE/TM polarization respectively. A relatively large alignment tolerance (AT) has also been demonstrated. Over a broadband wavelength range from 1490 nm similar to 1640 nm, the edge coupler exhibits a maximum loss of 1.30 dB, a wavelength dependent loss (WDL) of 0.23 dB for TE mode and a polarization dependent loss (PDL) of 0.33 dB when coupled to a single mode fiber (SMF) with a mode field diameter (MFD) of similar to 6 mu m .
引用
收藏
页码:35 / 38
页数:4
相关论文
共 18 条
  • [1] Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform
    Bahadori, Meisam
    Yang, Yansong
    Hassanien, Ahmed E.
    Goddard, Lynford L.
    Gong, Songbin
    [J]. OPTICS EXPRESS, 2020, 28 (20): : 29644 - 29661
  • [2] Two-dimensional grating coupler on an X-cut lithium niobate thin-film
    Chen, Bin
    Ruan, Ziliang
    Hu, Jinyao
    Wang, Jingyi
    Lu, Chao
    Lau, Alan Pak Tao
    Guo, Changjian
    Chen, Kaixuan
    Chen, Pengxin
    Liu, Liu
    [J]. OPTICS EXPRESS, 2021, 29 (02) : 1289 - 1295
  • [3] Demonstration of 110 GHz electro-optic polymer modulators
    Chen, DT
    Fetterman, HR
    Chen, AT
    Steier, WH
    Dalton, LR
    Wang, WS
    Shi, YQ
    [J]. APPLIED PHYSICS LETTERS, 1997, 70 (25) : 3335 - 3337
  • [4] Low Loss, Large Bandwidth Fiber-Chip Edge Couplers Based on Silicon-on-Insulator Platform
    He, An
    Guo, Xuhan
    Wang, Kangnian
    Zhang, Yong
    Su, Yikai
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (17) : 4780 - 4786
  • [5] Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits
    He, Lingyan
    Zhang, Mian
    Shams-Ansari, Amirhassan
    Zhu, Rongrong
    Wang, Cheng
    Marko, Loncar
    [J]. OPTICS LETTERS, 2019, 44 (09) : 2314 - 2317
  • [6] High-efficient coupler for thin-film lithium niobate waveguide devices
    Hu, Changran
    Pan, An
    Li, Tingan
    Wang, Xuanhao
    Liu, Yuheng
    Tao, Shiqi
    Zeng, Cheng
    Xia, Jinsong
    [J]. OPTICS EXPRESS, 2021, 29 (04) : 5397 - 5406
  • [7] Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate
    Kar, Arunita
    Bahadori, Meisam
    Gong, Songbin
    Goddard, Lynford L.
    [J]. OPTICS EXPRESS, 2019, 27 (11): : 15856 - 15867
  • [8] Capacitively-Loaded Thin-Film Lithium Niobate Modulator With Ultra-Flat Frequency Response
    Liu, Xuecheng
    Xiong, Bing
    Sun, Changzheng
    Hao, Zhibiao
    Wang, Lai
    Wang, Jian
    Han, Yanjun
    Li, Hongtao
    Luo, Yi
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (16) : 854 - 857
  • [9] Integrated laser Mach-Zehnder modulator on indium phosphide free of modulated-feedback
    Lovisa, S
    Bouché, N
    Helmers, H
    Heymes, Y
    Brillouet, F
    Gottesman, Y
    Rao, K
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (12) : 1295 - 1297
  • [10] Reed GT, 2010, NAT PHOTONICS, V4, P518, DOI [10.1038/nphoton.2010.179, 10.1038/NPHOTON.2010.179]