Visual exploration of fault detection using machine learning and image processing

被引:1
作者
Babu, D. Vijendra [1 ]
Jyothi, K. [2 ]
Mishra, Divyendu Kumar [3 ]
Dwivedi, Atul Kumar [4 ]
Raj, E. Fantin Irudaya [5 ]
Laddha, Shilpa [6 ]
机构
[1] Vinayaka Missions Res Fdn, Aarupadai Veedu Inst Technol, Dept Elect & Commun Engn, Paiyanoor 603104, Tamil Nadu, India
[2] Coll Engn Trikaripur, Dept ECE, Cheemeni, India
[3] VBS Purvanchal Univ Jaunpur, Fac Engn, Dept Comp Sci & Engn, Siddikpur, Uttar Pradesh, India
[4] Bundelkhand Inst Engn & Technol, Dept ECE, Jhansi, India
[5] Dr Sivanthi Aditanar Coll Engn, Dept Elect & Elect Engn, Thiruchendur, Tamil Nadu, India
[6] Govt Coll Engn, Dept Informat Technol, Aurangabad, Maharashtra, India
关键词
visual exploration; fault detection; convolutional neural networks; CNNs; image processing; SYSTEM; CLASSIFICATION; VISUALIZATION; AGGREGATION; TIME;
D O I
10.1504/IJESMS.2023.127394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The machine learning CNN method defect detection is highly reliant on the training data; thus, post-classification regularisation may significantly improve the output. The suggested fault detection process may perform well on demanding synthetic and actual information by using a practical synthetic fault system depending on the SEAM model. We further propose the visual exploration be made more reliable regarding fault tolerance. The visual exploration model is made up of three-phase namely, visual identification and mapping, dynamic controller, and terminate criterion. The submap-dependent on visual mapping phase ensures higher mapping manageability, semantic classification dependent on active controller ensures continuous driving, and a new completion assessment technique ensures robust re-localisation under the terminate criterion. To preserve mapping and improve visual tracking, all the components are tightly linked. The proposed model machine learning CNN model is examined, and actual tests show fault-tolerance methods are proven to withstand visual monitoring and mapping failure situations.
引用
收藏
页码:8 / 15
页数:9
相关论文
共 49 条
[1]  
AbuKhalil T., 2015, Innovations and Advances in Computing, Informatics, Syst. Sci., P165
[2]   Subsurface Structure Analysis Using Computational Interpretation and Learning A visual signal processing perspective [J].
AlRegib, Ghassan ;
Deriche, Mohamed ;
Long, Zhiling ;
Di, Haibin ;
Wang, Zhen ;
Alaudah, Yazeed ;
Shafiq, Muhammad Amir ;
Alfarraj, Motaz .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (02) :82-98
[3]  
Andrienko Gennady, 2009, Proceedings of the 2009 IEEE Symposium on Visual Analytics Science and Technology. VAST 2009. Held co-jointly with VisWeek 2009, P3, DOI 10.1109/VAST.2009.5332584
[4]   Spatio-temporal Aggregation for Visual Analysis of Movements [J].
Andrienko, Gennady ;
Andrienko, Natalia .
IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS, 2008, :51-58
[5]   Spatial Generalization and Aggregation of Massive Movement Data [J].
Andrienko, Natalia ;
Andrienko, Gennady .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (02) :205-219
[6]  
[Anonymous], 2010, INTELLIGENT MED TECH
[7]  
Araya-Polo Mauricio, 2017, Leading Edge, V36, P208, DOI 10.1190/tle360300208.1
[8]   Homography-based ground plane detection using a single on-board camera [J].
Arrospide, J. ;
Salgado, L. ;
Nieto, M. ;
Mohedano, R. .
IET INTELLIGENT TRANSPORT SYSTEMS, 2010, 4 (02) :149-160
[9]  
Babu OG, 2021, REV ROM MATER, V51, P17
[10]   Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps [J].
Bak, Peter ;
Mansmann, Florian ;
Janetzko, Halldor ;
Keim, Daniel A. .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) :913-920