Application of Theory of Characteristics Modes for Bandwidth Enhancement of a Miniaturized Minkowski Fractal Antenna

被引:7
作者
Dhara, R. [1 ]
Govil, M. C. [2 ,3 ]
Kundu, T. [4 ]
机构
[1] Natl Inst Technol Sikkim, Dept Elect & Commun Engn, Ravangla 737139, India
[2] Malviya Natl Inst Technol, Dept Comp Sci Engn, Jaipur 302017, Rajasthan, India
[3] Natl Inst Technol Sikkim, Dept Comp Sci Engn, Ravangla 737139, India
[4] Natl Inst Technol Sikkim, Dept Chem, Ravangla 737139, India
关键词
Iteration factor; L band; Minkowski fractal geometry; Size reduction; S band; Theory of characteristic modes (TCM); Ultra-wide band; MONOPOLE ANTENNA; DESIGN; IMPLEMENTATION; SHAPE; ANN;
D O I
10.1080/03772063.2021.1999866
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a miniaturized modified Minkowski fractal antenna with enhanced linearly polarized impedance bandwidth (IBW) in the lower frequency region. Applying theory of characteristic modes (TCM) analysis on a second iterated modified Minkowski radiator without feeding structure, modal currents and their corresponding modal fields (radiation patterns) were determined to recognize symmetric dominant modes to be specifically excited to generate the required radiation pattern. It gave direction for choosing quarter-wave microwave line feeding as the feed of choice to excite the four desired modes at 2.7, 5.7, 5.9, and 8.7 GHz and providing excellent impedance matching to generate the very wide IBW. Measured results matched well with simulations done using Ansys HFSS 2020R1. Measured IBW is 9.7 GHz (160%), from 1.2 to 10.9 GHz, with center resonance frequency (f(rc)) at 6.05 GHz, whereas simulated IBW is 9.4 GHz (162%), from 1.1 to 10.5 GHz with f(rc) at 5.8 GHz. The antenna size is 36 x 34 x 1.6 mm(3) (0.216 lambda(gL) x 0.204 lambda(gL) where at lower resonating frequency f(rL) = 1.1 GHz, lambda(gL) is the guided wavelength) with 82.24% reduction in size. This antenna may be utilized for "L", "S" band and UWB wireless communication.
引用
收藏
页码:5919 / 5934
页数:16
相关论文
共 47 条
[1]   A novel analysis of Minkowski fractal microstrip patch antenna [J].
Ataeiseresht, R. ;
Ghobadi, Ch. ;
Nourinia, J. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2006, 20 (08) :1115-1127
[2]   The Koch monopole: A small fractal antenna [J].
Baliarda, CP ;
Romeu, J ;
Cardama, A .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (11) :1773-1781
[3]   Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications [J].
Bangi, Inkwinder Singh ;
Sivia, Jagtar Singh .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 85 :159-168
[4]   Multi-Port Network Approach for the Analysis of Dual Band Fractal Microstrip Antennas [J].
Behera, Subhrakanta ;
Vinoy, K. J. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (11) :5100-5106
[5]   Compact coplanar waveguide-fed reconfigurable fractal antenna for switchable multiband systems [J].
Chaouche, Youcef Braham ;
Messaoudene, Idris ;
Benmabrouk, Ismail ;
Nedil, Mourad ;
Bouttout, Farid .
IET MICROWAVES ANTENNAS & PROPAGATION, 2019, 13 (01) :1-8
[6]  
Chen Y, 2015, CHARACTERISTIC MODES: THEORY AND APPLICATIONS IN ANTENNA ENGINEERING, P1, DOI 10.1002/9781119038900
[7]   Bandwidth Enhancement of a Dual-Polarized Slot of Antenna Using Characteristic Modes [J].
Wang, Chenghui ;
Chen, Yikai ;
Yang, Shiwen .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (06) :988-992
[8]   Wideband frequency reconfigurable Koch snowflake fractal antenna [J].
Choukiker, Yogesh Kumar ;
Behera, Santanu Kumar .
IET MICROWAVES ANTENNAS & PROPAGATION, 2017, 11 (02) :203-208
[9]   Hybrid Fractal Shape Planar Monopole Antenna Covering Multiband Wireless Communications With MIMO Implementation for Handheld Mobile Devices [J].
Choukiker, Yogesh Kumar ;
Sharma, Satish K. ;
Behera, Santanu K. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (03) :1483-1488
[10]   Miniaturized Fractal Reflectarray Element Using Fixed-Size Patch [J].
Costanzo, S. ;
Venneri, F. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 :1437-1440