A self-tuning version for the possibilistic fuzzy c-means clustering algorithm

被引:0
作者
Naghi, Mirtill-Boglarka [1 ,2 ]
Kovacs, Levente [3 ]
Szilagyi, Laszlo [2 ,3 ]
机构
[1] Obuda Univ, Doctoral Sch Appl Math & Appl Informat, Budapest, Hungary
[2] Sapientia Univ, Comput Intell Res Grp, Targu Mures, Romania
[3] Obuda Univ, Physiol Controls Res Ctr, Budapest, Hungary
来源
2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ | 2023年
关键词
fuzzy c-means clustering; possibilistic c-means clustering; mixed partitions; parameter selection;
D O I
10.1109/FUZZ52849.2023.10309788
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an alternative version of the possibilistic fuzzy c-means (PFCM) algorithm, which can tune automatically its possibilistic penalty terms and uses less parameters as the original PFCM. The proposed method incorporates some cluster size controlling variables into the objective function of PFCM, and with their help it can dynamically modify the penalty terms during the alternating optimization of the objective function. The proposed method is evaluated in comparison with the original PFCM using the IRIS data set and synthetic data. Numerical experiments show that the proposed method can produce fine partitions, and is stable in a wide range of its parameters.
引用
收藏
页数:6
相关论文
共 16 条
[1]  
Anderson E., 1935, B AM IRIS SOC, V59, P2, DOI [10.1007/978-1-4612-5098-22, DOI 10.1007/978-1-4612-5098-2-2]
[2]  
Arthur D, 2007, PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1027
[3]  
Baraldi A, 1999, IEEE T SYST MAN CY B, V29, P778, DOI 10.1109/3477.809032
[4]   A possibilistic approach to clustering - Comments [J].
Barni, M ;
Cappellini, V ;
Mecocci, A .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) :393-396
[5]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[6]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[7]   CLUSTER-ANALYSIS [J].
EVERITT, B .
QUALITY & QUANTITY, 1980, 14 (01) :75-100
[8]   The possibilistic C-means algorithm: Insights and recommendations [J].
Krishnapuram, R ;
Keller, JM .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) :385-393
[9]  
Krishnapuram R., 1993, IEEE Transactions on Fuzzy Systems, V1, P98, DOI 10.1109/91.227387
[10]   On Normalized Mutual Information: Measure Derivations and Properties [J].
Kvalseth, Tarald O. .
ENTROPY, 2017, 19 (11)