共 41 条
Few-shot intelligent fault diagnosis based on an improved meta-relation network
被引:8
作者:

Zheng, Xiaoqing
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China

Yue, Changyuan
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China

Wei, Jiang
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China

Xue, Anke
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China

Ge, Ming
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China

Kong, Yaguang
论文数: 0 引用数: 0
h-index: 0
机构:
Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China
机构:
[1] Hang Zhou Dianzi Univ, Automat Coll, Hangzhou, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Deep learning;
Fault diagnosis;
Few-shot learning;
Meta-relation network;
D O I:
10.1007/s10489-023-05128-9
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In recent decades, fault diagnosis methods based on machine learning and deep learning have achieved excellent results in fault diagnosis and are characterized by powerful automatic feature extraction and accurate identification capabilities. In many real-world scenarios, gathering enough samples of each fault type can be time-consuming and difficult. The scarcity of samples may significantly degrade the performance of these learning-based methods, making it extremely challenging to train a robust fault diagnosis classifier. In this paper, a few-shot fault diagnosis method based on the improved meta-relation network (IMRN) model is proposed to overcome the challenge of implementing fault diagnosis with limited data samples. First, a multiscale feature encoder module that utilizes two one-dimensional convolutional neural networks with different kernel sizes is used to automatically extract signal features from the original support dataset and query dataset. Then, a metric meta-learner module is designed to obtain relation scores between support samples and query samples. Finally, the feature vector output by the feature encoder module is input to the metric meta-learner module to determine the category of query samples by comparing the relation scores between the query dataset and support dataset, thus implementing the classification of fault categories. Experiments are conducted on three public datasets (TE, PU and CWRU), and the experimental results show that the proposed method outperforms other benchmark few-shot learning methods in terms of accuracy and exhibits remarkable robustness and adaptability in fault diagnosis.
引用
收藏
页码:30080 / 30096
页数:17
相关论文
共 41 条
- [1] A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis[J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1432 - 1442Chai, Zheng论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhao, Chunhui论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
- [2] A PLANT-WIDE INDUSTRIAL-PROCESS CONTROL PROBLEM[J]. COMPUTERS & CHEMICAL ENGINEERING, 1993, 17 (03) : 245 - 255DOWNS, JJ论文数: 0 引用数: 0 h-index: 0机构: Eastman Chemical Company, KingsportVOGEL, EF论文数: 0 引用数: 0 h-index: 0机构: Eastman Chemical Company, Kingsport
- [3] Fault Description Based Attribute Transfer for Zero-Sample Industrial Fault Diagnosis[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (03) : 1852 - 1862Feng, Liangjun论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ, Coll Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China Zhejiang Univ, Coll Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R ChinaZhao, Chunhui论文数: 0 引用数: 0 h-index: 0机构: Zhejiang Univ, Coll Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China Zhejiang Univ, Coll Control Sci & Engn, Inst Ind Proc Control, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
- [4] Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects[J]. KNOWLEDGE-BASED SYSTEMS, 2022, 235Feng, Yong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaChen, Jinglong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaXie, Jingsong论文数: 0 引用数: 0 h-index: 0机构: Cent South Univ, Sch Traff & Transportat Engn, Changsha 410083, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaZhang, Tianci论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaLv, Haixin论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaPan, Tongyang论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China
- [5] Similarity-based meta-learning network with adversarial domain adaptation for cross-domain fault identification[J]. KNOWLEDGE-BASED SYSTEMS, 2021, 217Feng, Yong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaChen, Jinglong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaYang, Zhuozheng论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaSong, Xiaogang论文数: 0 引用数: 0 h-index: 0机构: Xian Univ Technol, Sch Comp Sci & Engn, Xian 710048, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaChang, Yuanhong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaHe, Shuilong论文数: 0 引用数: 0 h-index: 0机构: Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaXu, Enyong论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China Dongfeng Liuzhou Motor Co Ltd, Liuzhou 545005, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R ChinaZhou, Zitong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
- [6] Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis[J]. ISA TRANSACTIONS, 2022, 120 : 383 - 401Feng, Yong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaChen, Jinglong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaZhang, Tianci论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaHe, Shuilong论文数: 0 引用数: 0 h-index: 0机构: Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaXu, Enyong论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Peoples R China Dongfeng Liuzhou Motor Co Ltd, Liuzhou 545005, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R ChinaZhou, Zitong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst, Engn, Xian 710049, Peoples R China
- [7] A zero-shot learning method for fault diagnosis under unknown working loads[J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) : 899 - 909Gao, Yiping论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R ChinaGao, Liang论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R ChinaLi, Xinyu论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R ChinaZheng, Yuwei论文数: 0 引用数: 0 h-index: 0机构: Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
- [8] Automatic features extraction of faults in PEM fuel cells by a siamese artificial neural network[J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (70) : 34854 - 34866Guarino, Antonio论文数: 0 引用数: 0 h-index: 0机构: DIEM Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy DIEM Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalySpagnuolo, Giovanni论文数: 0 引用数: 0 h-index: 0机构: DIEM Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy DIEM Univ Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
- [9] An optimized long short-term memory network based fault diagnosis model for chemical processes[J]. JOURNAL OF PROCESS CONTROL, 2020, 92 : 161 - 168Han, Yongming论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R ChinaDing, Ning论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R ChinaGeng, Zhiqiang论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R ChinaWang, Zun论文数: 0 引用数: 0 h-index: 0机构: Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R ChinaChu, Chong论文数: 0 引用数: 0 h-index: 0机构: Harvard Univ, Harvard Med Sch, Dept Biomed Informat, Cambridge, MA 02138 USA Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
- [10] Prototype augmented network with metric-mixed under limited samples for mechanical intelligent fault recognition[J]. APPLIED SOFT COMPUTING, 2022, 130Hou, Rujie论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R ChinaChen, Jinglong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R ChinaHe, Shuilong论文数: 0 引用数: 0 h-index: 0机构: Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R ChinaLi, Fudong论文数: 0 引用数: 0 h-index: 0机构: Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R ChinaZhou, Zitong论文数: 0 引用数: 0 h-index: 0机构: Shaanxi Fast Gear Co Ltd, Xian 710119, Peoples R China Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian, Peoples R China