Jacobi spectral projectionmethods for Fredholm integral equations of the first kind

被引:1
作者
Patel, Subhashree [1 ]
Panigrahi, Bijaya Laxmi [2 ]
机构
[1] Sambalpur Univ, Dept Math, Sambalpur 768019, Odisha, India
[2] Gangadhar Meher Univ, Dept Math, Sambalpur 768004, Odisha, India
关键词
Ill-posed problems; Fredholm integral equation of the first kind; Galerkin method; Tikhonov regularization method; Jacobi polynomials; REGULARIZED APPROXIMATION; CONVERGENCE ANALYSIS;
D O I
10.1007/s11075-023-01638-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we employ Tikhonov regularization method with the projection methods using Jacobi polynomial bases to the first kind of Fredholm integral equations to find the approximate solution. We discuss the convergence analysis and obtain the convergence rates in L-omega alpha,beta(2) norm under a priori parameter choice strategy. We also consider the Engl-type discrepancy principle as a posteriori parameter strategy for finding the regularization parameter and also evaluate the convergence rate which is of optimal order. Finally, we provide the numerical experiments to justify the theoretical results.
引用
收藏
页码:33 / 57
页数:25
相关论文
共 50 条
[31]   INVERSE PROBLEMS FORMULATED IN TERMS OF FIRST-KIND FREDHOLM INTEGRAL EQUATIONS IN INDIRECT MEASUREMENTS [J].
Mroczka, Janusz ;
Szczuczynski, Damian .
METROLOGY AND MEASUREMENT SYSTEMS, 2009, 16 (03) :333-357
[32]   A weighted H1 seminorm regularization method for Fredholm integral equations of the first kind [J].
Lin, Fu-Rong ;
Yang, Shi-Wei .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (05) :1012-1029
[33]   Numerical results for linear Fredholm integral equations of the first kind over surfaces in three dimensions [J].
Kleefeld, Andreas .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) :2728-2742
[34]   Error analysis of Jacobi spectral collocation methods for Fredholm-Hammerstein integral equations with weakly singular kernel [J].
Panigrahi, Bijaya Laxmi .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (06) :1230-1253
[35]   Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind [J].
Xianjuan Li ;
Tao Tang .
Frontiers of Mathematics in China, 2012, 7 :69-84
[36]   Mathematical Models of Polarization Adaptive Antenna Arrays Based on First-Kind Fredholm Integral Equations [J].
Marchenko, A. O. ;
Husak, Yu A. ;
Khamula, S. V. ;
Voitko, V. V. ;
Steiskal, A. B. ;
Kuzmenko, V. V. .
VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (93) :52-57
[37]   Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind [J].
Li, Xianjuan ;
Tang, Tao .
FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (01) :69-84
[38]   Jacobi Spectral Methods for Volterra-Urysohn Integral Equations of Second Kind with Weakly Singular Kernels [J].
Kant, Kapil ;
Nelakanti, Gnaneshwar .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (15) :1787-1821
[39]   Using Sinc-collocation method for solving weakly singular Fredholm integral equations of the first kind [J].
Maleknejad, K. ;
Ostadi, A. .
APPLICABLE ANALYSIS, 2017, 96 (04) :702-713
[40]   Solution Reduction of a Dynamic Plates Bending Problem to the Sequential Solution of the First Kind Fredholm Integral Equations [J].
M.Mirzaeva M. ;
Tajibaev G.O. ;
Abdurazakov N.N. ;
Turgunova L. .
Journal of The Institution of Engineers (India): Series C, 2023, 104 (03) :605-611