DRAVA: Aligning Human Concepts with Machine Learning Latent Dimensions for the Visual Exploration of Small Multiples

被引:12
作者
Wang, Qianwen [1 ]
L'Yi, Sehi [1 ]
Gehlenborg, Nils [1 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
来源
PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2023) | 2023年
基金
美国国家卫生研究院;
关键词
Visual exploration; XAI; Human-AI collaboration; latent space; small multiples; ANALYTICS; SYSTEM; GENOME;
D O I
10.1145/3544548.3581127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Latent vectors extracted by machine learning (ML) are widely used in data exploration (e.g., t-SNE) but sufer from a lack of interpretability. While previous studies employed disentangled representation learning (DRL) to enable more interpretable exploration, they often overlooked the potential mismatches between the concepts of humans and the semantic dimensions learned by DRL. To address this issue, we propose Drava, a visual analytics system that supports users in 1) relating the concepts of humans with the semantic dimensions of DRL and identifying mismatches, 2) providing feedback to minimize the mismatches, and 3) obtaining data insights from concept-driven exploration. Drava provides a set of visualizations and interactions based on visual piles to help users understand and refne concepts and conduct concept-driven exploration. Meanwhile, Drava employs a concept adaptor model to fne-tune the semantic dimensions of DRL based on user refnement. The usefulness of Drava is demonstrated through application scenarios and experimental validation.
引用
收藏
页数:15
相关论文
共 68 条
  • [1] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [2] Power to the People: The Role of Humans in Interactive Machine Learning
    Amershi, Saleema
    Cakmak, Maya
    Knox, W. Bradley
    Kulesza, Todd
    [J]. AI MAGAZINE, 2014, 35 (04) : 105 - 120
  • [3] OnTAD: hierarchical domain structure reveals the divergence of activity among TADs and boundaries
    An, Lin
    Yang, Tao
    Yang, Jiahao
    Nuebler, Johannes
    Xiang, Guanjue
    Hardison, Ross C.
    Li, Qunhua
    Zhang, Yu
    [J]. GENOME BIOLOGY, 2019, 20 (01)
  • [4] [Anonymous], 2018, ADV NEURAL INFORM PR, V31
  • [5] [Anonymous], 1990, Envisioning information
  • [6] Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks
    Bach, B.
    Henry-Riche, N.
    Dwyer, T.
    Madhyastha, T.
    Fekete, J-D.
    Grabowski, T.
    [J]. COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 31 - 40
  • [7] Behrisch M, 2014, IEEE CONF VIS ANAL, P43, DOI 10.1109/VAST.2014.7042480
  • [8] Behrisch Michael, 2018, INT S BIG DATA VISUA, P1
  • [9] Embedding Comparator: Visualizing Differences in Global Structure and Local Neighborhoods via Small Multiples
    Boggust, Angie
    Carter, Brandon
    Satyanarayan, Arvind
    [J]. IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2022, : 746 - 766
  • [10] Burgess Christopher P, 2017, INT C MACH LEARN ICL