Quantifying Multifrequency Ocean Altimeter Wind Speed Error Due to Sea Surface Temperature and Resulting Impacts on Satellite Sea Level Measurements

被引:1
作者
Tran, Ngan [1 ]
Vandemark, Douglas [2 ]
Bignalet-Cazalet, Francois [3 ]
Dibarboure, Gerald [3 ]
机构
[1] Collecte Localisat Satell, 11 Rue Hermes, F-31520 Ramonville St Agne, France
[2] Univ New Hampshire, Inst Study Earth Oceans & Space, Ocean Proc Anal Lab, Durham, NH 03824 USA
[3] Ctr Natl Etud Spatiales, 18 Ave Edouard Belin, F-31401 Toulouse 09, France
关键词
ocean altimetry; ocean backscatter; Ka band; Ku band; sea surface temperature; sea level; wind speed; sea state bias; AltiKa; Jason-2; SWOT; STATE BIAS; RADAR BACKSCATTER; WAVE PERIOD; CLIMATE; JASON-1; RAIN; VALIDATION; SLOPE;
D O I
10.3390/rs15133235
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Surface wind speed measurements from a satellite radar altimeter are used to adjust altimeter sea level measurements via sea state bias range correction. We focus here on previously neglected ocean radar backscatter and subsequent wind speed variations due to sea surface temperature (SST) change that may impact these sea level estimates. The expected error depends on the radar operating frequency and may be significant at the Ka band (36 GHz) frequency chosen for the new Surface Water and Ocean Topography (SWOT) satellite launched in December 2022. SWOT is expected to revolutionize oceanography by providing wide-swath Ka band observations and enhanced spatial resolution compared to conventional Ku band (14 GHz) altimetry. The change to the Ka band suggests a reconsideration of SST impact on wind and sea level estimates, and we investigate this in advance of SWOT using existing long-term Ku and Ka band satellite altimeter datasets. This study finds errors up to 1.5 m/s in wind speed estimation and 1.0 cm in sea level for AltiKa altimeter data. Future SWOT data analyses may require consideration of this dependence prior to using its radar backscatter data in its sea level estimation.
引用
收藏
页数:13
相关论文
共 65 条
[1]  
Abd-Elgawad A., 2019, IPCC SPECIAL REPORT, P321, DOI [DOI 10.1017/9781009157964.006, DOI 10.1126/SCIENCE.AAM6284]
[2]   Ku-Band Radar Altimeter Surface Wind Speed Algorithm [J].
Abdalla, S. .
MARINE GEODESY, 2012, 35 :276-298
[3]  
Abdalla S., 2007, ENV S EUR SPAC AG MO
[4]   Calibration of SARAL/AltiKa Wind Speed [J].
Abdalla, Saleh .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) :1121-1123
[5]   Detection of Long-Term Instabilities on Altimeter Backscatter Coefficient Thanks to Wind Speed Data Comparisons from Altimeters and Models [J].
Ablain, M. ;
Philipps, S. ;
Urvoy, M. ;
Tran, N. ;
Picot, N. .
MARINE GEODESY, 2012, 35 :258-275
[6]  
Benassai G., 2012, P 22 INT OFFSH POL E, P1171
[7]   Homogenization of scatterometer wind retrievals [J].
Bentamy, Abderrahim ;
Grodsky, Semyon A. ;
Elyouncha, Anis ;
Chapron, Bertrand ;
Desbiolles, Fabien .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2017, 37 (02) :870-889
[8]  
Bignalet-Cazalet F., 2021, Tech. Rep. sALP-MU-M-OP-15984-CN
[9]   THE CONCEPT OF ESSENTIAL CLIMATE VARIABLES IN SUPPORT OF CLIMATE RESEARCH, APPLICATIONS, AND POLICY [J].
Bojinski, Stephan ;
Verstraete, Michel ;
Peterson, Thomas C. ;
Richter, Carolin ;
Simmons, Adrian ;
Zemp, Michael .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (09) :1431-1443
[10]   Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era [J].
Cazenave, Anny ;
Hamlington, Ben ;
Horwath, Martin ;
Barletta, Valentina R. ;
Benveniste, Jerome ;
Chambers, Don ;
Doell, Petra ;
Hogg, Anna E. ;
Legeais, Jean Francois ;
Merrifield, Mark ;
Meyssignac, Benoit ;
Mitchum, Garry ;
Nerem, Steve ;
Pail, Roland ;
Palanisamy, Hindumathi ;
Paul, Frank ;
von Schuckmann, Karina ;
Thompson, Philip .
FRONTIERS IN MARINE SCIENCE, 2019, 6