Trapped modes along periodic structures submerged in a two-layer fluid with background steady flow

被引:0
|
作者
Dias, Goncalo A. S. [1 ,2 ]
机构
[1] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Lisbon, Portugal
[2] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
spectral problem; steady flow; trapped modes; EDGE WAVES; EXISTENCE; UNIQUENESS;
D O I
10.1002/mma.9557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The trapping of linear water waves by infinite arrays of three-dimensional fixed periodic structures in a two-layer fluid, where the layers are considered semi-infinite in depth, have a common interface and move each with an independent uniform velocity with respect to the ground, is studied. The existence of real solutions to the dispersion relation demands a further stability condition on the layer velocities. From the variational formulation, after certain choices of background steady flow, results a nonlinear spectral problem, which upon a sensible linearization gives a geometric condition ensuring the existence of trapped modes (within the limits set by the stability condition). Symmetries reduce the global problem to the first quadrant of the velocity space. Examples are shown of configurations of obstacles that are both independent of the layer velocities and dependent only on their difference. Future developments are suggested.
引用
收藏
页码:18274 / 18299
页数:26
相关论文
共 11 条
  • [1] Existence of trapped modes along periodic structures in a two-layer fluid
    Cal, F. S.
    Dias, G. S. A.
    Videman, J. H.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (02) : 273 - 292
  • [2] A sufficient condition for the existence of trapped modes for oblique waves in a two-layer fluid
    Nazarov, Sergey A.
    Videman, Juha H.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3799 - 3816
  • [3] Trapped modes around freely floating bodies in a two-layer fluid channel
    Cal, Filipe S.
    Dias, Goncalo A. S.
    Videman, Juha H.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2170):
  • [4] Edge waves propagating in a two-layer fluid along a periodic coastline
    Cal, F. S.
    Dias, G. A. S.
    Pereira, B. M. M.
    Videman, J. H.
    JOURNAL OF ENGINEERING MATHEMATICS, 2014, 85 (01) : 1 - 17
  • [5] Edge waves propagating in a two-layer fluid along a periodic coastline
    F. S. Cal
    G. A. S. Dias
    B. M. M. Pereira
    J. H. Videman
    Journal of Engineering Mathematics, 2014, 85 : 1 - 17
  • [6] Trapped modes and resonances for thin horizontal cylinders in a two-layer fluid
    Zhevandrov, P.
    Merzon, A.
    Rodriguez, M. I. Romero
    Mendez, J. E. De la Paz
    WAVE MOTION, 2021, 106
  • [7] Asymptotic behavior of trapped modes in two-layer fluids
    Nazarov, S. A.
    Taskinen, J.
    Videman, J. H.
    WAVE MOTION, 2013, 50 (02) : 111 - 126
  • [8] Trapped modes in a two-layer fluid of finite depth bounded above by a rigid lid
    Saha, S.
    Bora, S. N.
    WAVE MOTION, 2013, 50 (06) : 1050 - 1060
  • [9] Uniqueness and trapped modes in the linear problem of the steady flow over a submerged hollow
    Pierotti, D
    WAVE MOTION, 2006, 43 (03) : 222 - 231
  • [10] Trapped flexural waves supported by a pair of identical cylinders in a two-layer fluid
    Saha, Sunanda
    Bora, Swaroop Nandan
    SN APPLIED SCIENCES, 2020, 2 (08):