GAN-based one dimensional medical data augmentation

被引:20
|
作者
Zhang, Ye [1 ]
Wang, Zhixiang [2 ]
Zhang, Zhen [2 ]
Liu, Junzhuo [1 ]
Feng, Ying [3 ]
Wee, Leonard [2 ]
Dekker, Andre [2 ]
Chen, Qiaosong [1 ]
Traverso, Alberto [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Data Engn & Visual Comp, Chongqing 400065, Peoples R China
[2] Maastricht Univ, GROW Sch Oncol, Dept Radiat Oncol Maastro, Med Ctr, Maastricht, Netherlands
[3] Capital Med Univ, Beijing Friendship Hosp, Dept Ultrasound, Beijing, Peoples R China
关键词
Generative adversarial networks; SMOTE; Medical data augmentation; Deep learning; Artificial intelligence;
D O I
10.1007/s00500-023-08345-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the continuous development of human life and society, the medical field is constantly improving. However, modern medicine still faces many limitations, including challenging and previously unsolvable problems. In these cases, artificial intelligence (AI) can provide solutions. The research and application of generative adversarial networks (GAN) are a clear example. While most researchers focus on image augmentation, there are few one-dimensional data augmentation examples. The radiomics feature extracted from RT and CT images is one-dimensional data. As far as we know, we are the first to apply the WGAN-GP algorithm to generate radiomics data in the medical field. In this paper, we input a portion of the original real data samples into the model. The model learns the distribution of the input data samples and generates synthetic data samples with similar distribution to the original real data, which can solve the problem of obtaining annotated medical data samples. We have conducted experiments on the public dataset Heart Disease Cleveland and the private dataset. Compared with the traditional method of Synthetic Minority Oversampling Technique (SMOTE) and common GAN for data augmentation, our method has significantly improved the AUC and SEN values under different data proportions. At the same time, our method has also shown varying levels of improvement in ACC and SPE values. This demonstrates that our method is effective and feasible.
引用
收藏
页码:10481 / 10491
页数:11
相关论文
共 50 条
  • [1] GAN-based one dimensional medical data augmentation
    Ye Zhang
    Zhixiang Wang
    Zhen Zhang
    Junzhuo Liu
    Ying Feng
    Leonard Wee
    Andre Dekker
    Qiaosong Chen
    Alberto Traverso
    Soft Computing, 2023, 27 : 10481 - 10491
  • [2] LEGAN: Addressing Intraclass Imbalance in GAN-Based Medical Image Augmentation for Improved Imbalanced Data Classification
    Ding, Hongwei
    Huang, Nana
    Wu, Yaoxin
    Cui, Xiaohui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [3] Improving imbalanced medical image classification through GAN-based data augmentation methods
    Ding, Hongwei
    Huang, Nana
    Wu, Yaoxin
    Cui, Xiaohui
    PATTERN RECOGNITION, 2025, 166
  • [4] GAN-Based Data Augmentation for Visual Finger Spelling Recognition
    Kwolek, Bogdan
    ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041
  • [5] Enhancing human action recognition with GAN-based data augmentation
    Pulakurthi, Prasanna Reddy
    de Melo, Celso M.
    Rao, Raghuveer
    Rabbani, Majid
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [6] Optimized automated cardiac MR scar quantification with GAN-based data augmentation
    Lustermans, Didier R. P. R. M.
    Amirrajab, Sina
    Veta, Mitko
    Breeuwer, Marcel
    Scannell, Cian M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [7] GAN-BASED SYNTHETIC MEDICAL IMAGE AUGMENTATION FOR CLASS IMBALANCED DERMOSCOPIC IMAGE ANALYSIS
    Alshardan, Amal
    Alahmari, Saad
    Alghamdi, Mohammed
    AL Sadig, Mutasim
    Mohamed, Abdullah
    Mohammed, Gouse Pasha
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [8] GAN-Based Data Augmentation For Improving The Classification Of EEG Signals
    Bhat, Sudhanva
    Hortal, Enrique
    THE 14TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2021, 2021, : 453 - 458
  • [9] Enhancement of Image Classification Using Transfer Learning and GAN-Based Synthetic Data Augmentation
    Chatterjee, Subhajit
    Hazra, Debapriya
    Byun, Yung-Cheol
    Kim, Yong-Woon
    MATHEMATICS, 2022, 10 (09)
  • [10] A NOVEL GAN-BASED DATA AUGMENTATION ALGORITHM FOR SEMICONDUCTOR DEFECT INSPECTION
    Liu, Yang
    Guan, Yuanjun
    Han, Tianyan
    Ma, Can
    Wang, Jiayi
    Wang, Tao
    Yi, Qianchuan
    Hu, Lilei
    CONFERENCE OF SCIENCE & TECHNOLOGY FOR INTEGRATED CIRCUITS, 2024 CSTIC, 2024,