Limited memory restarted lp-lq minimization methods using generalized Krylov subspaces

被引:7
作者
Buccini, Alessandro [1 ]
Reichel, Lothar [2 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Via Osped 72, I-09124 Cagliari, Italy
[2] Kent State Univ, Dept Math Sci, 1300 Lefton Esplanade, Kent, OH 44242 USA
关键词
l(p)-l(q) minimization; Inverse problem; Regression; Iterative method; PARAMETER CHOICE RULES; REGULARIZATION; ALGORITHM;
D O I
10.1007/s10444-023-10020-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regularization of certain linear discrete ill-posed problems, as well as of certain regression problems, can be formulated as large-scale, possibly nonconvex, minimization problems, whose objective function is the sum of the p(th) power of the l(p)-norm of a fidelity term and the qth power of the lq-norm of a regularization term, with 0 < p,q = 2. We describe new restarted iterative solution methods that require less computer storage and execution time than the methods described by Huang et al. (BIT Numer. Math. 57,351-378, 14). The reduction in computer storage and execution time is achieved by periodic restarts of the method. Computed examples illustrate that restarting does not reduce the quality of the computed solutions.
引用
收藏
页数:26
相关论文
共 28 条
[1]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[2]   Efficient determination of multiple regularization parameters in a generalized L-curve framework [J].
Belge, M ;
Kilmer, ME ;
Miller, EL .
INVERSE PROBLEMS, 2002, 18 (04) :1161-1183
[3]   Modulus-based iterative methods for constrainedlp-lqminimization [J].
Buccini, A. ;
Pasha, M. ;
Reichel, L. .
INVERSE PROBLEMS, 2020, 36 (08)
[4]  
Buccini A., 2021, Commun. Stat. Simul. Comput.
[5]   A comparison of parameter choice rules for ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document}-ℓq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^q$$\end{document} minimization [J].
Alessandro Buccini ;
Monica Pragliola ;
Lothar Reichel ;
Fiorella Sgallari .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) :441-463
[6]   Generalized cross validation for lp-lq minimization [J].
Buccini, Alessandro ;
Reichel, Lothar .
NUMERICAL ALGORITHMS, 2021, 88 (04) :1595-1616
[7]   Large-scale regression with non-convex loss and penalty [J].
Buccini, Alessandro ;
Cabrera, Omar De la Cruz ;
Donatelli, Marco ;
Martinelli, Andrea ;
Reichel, Lothar .
APPLIED NUMERICAL MATHEMATICS, 2020, 157 :590-601
[8]  
Buccini A, 2019, J SCI COMPUT, V78, P1526, DOI 10.1007/s10915-018-0816-5
[9]   A SEMIBLIND REGULARIZATION ALGORITHM FOR INVERSE PROBLEMS WITH APPLICATION TO IMAGE DEBLURRING [J].
Buccini, Alessandro ;
Donatelli, Marco ;
Ramlau, Ronny .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A452-A483
[10]  
Chan RH, 2014, LECT NOTES COMPUT SC, V8293, P78, DOI 10.1007/978-3-642-54774-4_4