Bio-Inspired Multiscale Design for Strong and Tough Biological Ionogels

被引:60
作者
Cao, Kaiyue [1 ]
Zhu, Ying [1 ]
Zheng, Zihao [1 ]
Cheng, Wanke [1 ]
Zi, Yifei [1 ]
Zeng, Suqing [1 ]
Zhao, Dawei [1 ,2 ]
Yu, Haipeng [1 ]
机构
[1] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Minist Educ, Harbin 150040, Peoples R China
[2] Shenyang Univ Chem Technol, Key Lab Resources Chem & Mat, Minist Educ, Shenyang 110142, Peoples R China
基金
中国国家自然科学基金;
关键词
biomimetic design; cellulose; ionogels; multiscale structure; silk fibers; MECHANICALLY ROBUST; TRANSPARENT; HYDROGELS;
D O I
10.1002/advs.202207233
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure design provides an effective solution to develop advanced soft materials with desirable mechanical properties. However, creating multiscale structures in ionogels to obtain strong mechanical properties is challenging. Here, an in situ integration strategy for producing a multiscale-structured ionogel (M-gel) via ionothermal-stimulated silk fiber splitting and moderate molecularization in the cellulose-ions matrix is reported. The produced M-gel shows a multiscale structural superiority comprised of microfibers, nanofibrils, and supramolecular networks. When this strategy is used to construct a hexactinellid inspired M-gel, the resultant biomimetic M-gel shows excellent mechanical properties including elastic modulus of 31.5 MPa, fracture strength of 6.52 MPa, toughness reaching 1540 kJ m(-3), and instantaneous impact resistance of 3.07 kJ m(-1), which are comparable to those of most previously reported polymeric gels and even hardwood. This strategy is generalizable to other biopolymers, offering a promising in situ design method for biological ionogels that can be expanded to more demanding load-bearing materials requiring greater impact resistance.
引用
收藏
页数:10
相关论文
共 39 条
  • [21] Synergistic Solvation and Interface Regulations of Eco-Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc-Ion Batteries
    Wang, Baojun
    Zheng, Rong
    Yang, Wei
    Han, Xin
    Hou, Chengyi
    Zhang, Qinghong
    Li, Yaogang
    Li, Kerui
    Wang, Hongzhi
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (23)
  • [22] Tough and stretchable ionogels by in situ phase separation
    Wang, Meixiang
    Zhang, Pengyao
    Shamsi, Mohammad
    Thelen, Jacob L.
    Qian, Wen
    Vi Khanh Truong
    Ma, Jinwoo
    Hu, Jian
    Dickey, Michael D.
    [J]. NATURE MATERIALS, 2022, 21 (03) : 359 - +
  • [23] Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers
    Wang, Qi
    Ling, Shengjie
    Yao, Quanzhou
    Li, Qunyang
    Hu, Debo
    Dai, Qing
    Weitz, David A.
    Kaplan, David L.
    Buehler, Markus J.
    Zhang, Yingying
    [J]. ACS MATERIALS LETTERS, 2020, 2 (02): : 153 - 160
  • [24] Assembly of silver nanowires and PEDOT:PSS with hydrocellulose toward highly flexible, transparent and conductivity-stable conductors
    Wang, Xu
    Zhou, Jianhong
    Zhu, Ying
    Cheng, Wanke
    Zhao, Dawei
    Xu, Guangwen
    Yu, Haipeng
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [25] Rapid Microwave-Assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties
    Wang, Xu
    Zhou, Jianhong
    Pang, Bo
    Zhao, Dawei
    [J]. JOURNAL OF RENEWABLE MATERIALS, 2019, 7 (12) : 1363 - 1380
  • [26] Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior
    Wang, Yushu
    Huang, Wenwen
    Wang, Yu
    Mu, Xuan
    Ling, Shengjie
    Yu, Haipeng
    Chen, Wenshuai
    Guo, Chengchen
    Watson, Matthew C.
    Yu, Yingjie
    Black, Lauren D., III
    Li, Meng
    Omenetto, Fiorenzo G.
    Li, Chunmei
    Kaplan, David L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (25) : 14602 - 14608
  • [27] A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators
    Wei, Junjie
    Zheng, Yinfei
    Chen, Tao
    [J]. MATERIALS HORIZONS, 2021, 8 (10) : 2761 - 2770
  • [28] From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics
    Wu, Ronghui
    Ma, Liyun
    Liu, Xiang Yang
    [J]. ADVANCED SCIENCE, 2022, 9 (04)
  • [29] Stretchable and fatigue-resistant materials
    Xiang, Chunping
    Wang, Zhengjin
    Yang, Canhui
    Yao, Xi
    Wang, Yecheng
    Suo, Zhigang
    [J]. MATERIALS TODAY, 2020, 34 : 7 - 16
  • [30] A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Double-Network Hydrogels
    Yang, Yanyu
    Wang, Xing
    Yang, Fei
    Shen, Hong
    Wu, Decheng
    [J]. ADVANCED MATERIALS, 2016, 28 (33) : 7178 - +