The role of laser chirp in relativistic electron acceleration using multi-electron gas targets

被引:5
作者
Grigoriadis, A. [1 ,2 ]
Andrianaki, G. [1 ,3 ]
Tatarakis, M. [1 ,4 ]
Benis, E. P. [2 ]
Papadogiannis, N. A. [1 ,5 ]
机构
[1] Hellen Mediterranean Univ, Inst Plasma Phys & Lasers, Rethimnon 74100, Greece
[2] Univ Ioannina, Dept Phys, Ioannina 45110, Greece
[3] Tech Univ Crete, Sch Prod Engn & Management, Khania 73100, Greece
[4] Hellen Mediterranean Univ, Dept Elect Engn, Khania 73133, Greece
[5] Hellen Mediterranean Univ, Dept Mus Technol & Acoust, Phys Acoust & Optoacoust Lab, Rethimnon 74100, Greece
关键词
laser wakefield acceleration (LWFA); laser plasma interaction; chirped laser pulses; BEAMS;
D O I
10.1088/1361-6587/acbb25
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The role of multi-10 TW chirped laser pulses interacting with N-2 gas jet targets, as a test case for multi-electron targets, is experimentally examined. Complementary measurements using He gas jet targets, which are fully ionized well before the laser pulse peak, are also presented for comparison with the measurements for the multi-electron N-2 targets. It is found that for both gases positively chirped laser pulses accelerate electrons more efficiently compared to the Fourier transform-limited and negatively chirped pulses. Furthermore, multi-electron targets offer additional electron injection mechanisms for efficient electron acceleration as a function of the chirp, due to the dynamic ionization of inner-shell electrons near the peak of the laser pulse. Finally, we show that the background plasma density value plays a critical role in the efficient acceleration of positively chirped pulses as well as in the tuning of the positive chirp value for maximizing the electron energy. We clearly observe that larger plasma density values require higher positive chirp values for efficient electron acceleration.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
AKHIEZER AI, 1956, SOV PHYS JETP-USSR, V3, P696
[2]  
[Anonymous], 2019, SCI REP-UK, DOI DOI 10.1038/S41598-018-37186-2
[3]  
Atzeni S., 2022, Europhysics News, V53, P18, DOI 10.1051/epn/2022106
[4]   An evaluation of sustainability and societal impact of high-power laser and fusion technologies: a case for a new European research infrastructure [J].
Atzeni, S. ;
Batani, D. ;
Danson, C. N. ;
Gizzi, L. A. ;
Perlado, M. ;
Tatarakis, M. ;
Tikhonchuk, V. ;
Volpe, L. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9
[5]   High-intensity laser-driven secondary radiation sources using the ZEUS 45 TW laser system at the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University Research Centre [J].
Clark, E. L. ;
Grigoriadis, A. ;
Petrakis, S. ;
Tazes, I ;
Andrianaki, G. ;
Skoulakis, A. ;
Orphanos, Y. ;
Kaselouris, E. ;
Fitilis, I ;
Chatzakis, J. ;
Bakarezos, E. ;
Dimitriou, V ;
Benis, E. P. ;
Papadogiannis, N. A. ;
Tatarakis, M. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2021, 9
[6]   Femtosecond x rays from laser-plasma accelerators [J].
Corde, S. ;
Phuoc, K. Ta ;
Lambert, G. ;
Fitour, R. ;
Malka, V. ;
Rousse, A. ;
Beck, A. ;
Lefebvre, E. .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :1-48
[7]   GROUP-VELOCITY OF LARGE-AMPLITUDE ELECTROMAGNETIC-WAVES IN A PLASMA [J].
DECKER, CD ;
MORI, WB .
PHYSICAL REVIEW LETTERS, 1994, 72 (04) :490-493
[8]   Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses [J].
Faure, J. ;
Rechatin, C. ;
Norlin, A. ;
Lifschitz, A. ;
Glinec, Y. ;
Malka, V. .
NATURE, 2006, 444 (7120) :737-739
[9]   A laser-plasma accelerator producing monoenergetic electron beams [J].
Faure, J ;
Glinec, Y ;
Pukhov, A ;
Kiselev, S ;
Gordienko, S ;
Lefebvre, E ;
Rousseau, JP ;
Burgy, F ;
Malka, V .
NATURE, 2004, 431 (7008) :541-544
[10]   Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel [J].
Faure, J. ;
Rechatin, C. ;
Lundh, O. ;
Ammoura, L. ;
Malka, V. .
PHYSICS OF PLASMAS, 2010, 17 (08)