Electrocatalytic Oxygen Reduction to Hydrogen Peroxide on Graphdiyne-Based Single-Atom Catalysts: First-Principles Studies

被引:20
作者
Lian, Kangkang [1 ]
Wan, Qiang [1 ]
Jiang, Rong [2 ]
Lin, Sen [1 ]
机构
[1] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Inst Adv Energy Mat, Coll Chem, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
ORR; density functional theory (DFT); graphdiyne (GDY); electrocatalytic; single-atom catalysts; H2O2; DIRECT H2O2 PRODUCTION; WATER; SELECTIVITY; OXIDATION; GRAPHYNE;
D O I
10.3390/catal13020307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrocatalytic oxygen reduction reaction (2e(-) ORR) via a two-electron process is a promising pathway for the production of hydrogen peroxide (H2O2). Here, we systematically investigated the 2e(-) ORR process on graphdiyne (GDY) supported single transition metal atoms (TM1@GDY) using density functional theory (DFT) calculations. Among the 23 TM1@GDY catalysts, Pt-1@GDY showed the best performance for the H2O2 product with an overpotential as low as 0.15 V. The electronic structure analysis, on the one hand, elucidates that the electron transfer between Pt-1@GDY and the adsorbed O-2 facilitates the activation of O-2, and, on the other hand, reveals that the high 2e(-) ORR activity of Pt-1@GDY lies in the transfer of electrons from the filled Pt-3d orbitals to the 2p antibonding orbitals of OOH*, which effectively activates the O-O bond. This work provides insights to design efficient electrocatalysts for H2O2 generation.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Regulating the coordination environment of single-atom catalysts for electrocatalytic CO2 reduction [J].
Lu, Song ;
Lou, Fengliu ;
Zhao, Yafei ;
Yu, Zhixin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 :301-310
[42]   Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution [J].
Chen, Cui-Hong ;
Wu, Deyao ;
Li, Zhe ;
Zhang, Rui ;
Kuai, Chun-Guang ;
Zhao, Xue-Ru ;
Dong, Cun-Ku ;
Qiao, Shi-Zhang ;
Liu, Hui ;
Du, Xi-Wen .
ADVANCED ENERGY MATERIALS, 2019, 9 (20)
[43]   Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production [J].
Gao, Zhimin ;
Zhu, Qiuzi ;
Cao, Yanyan ;
Wang, Cunshi ;
Liu, Luming ;
Zhu, Jianzhong .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02)
[44]   Regulating Efficient and Selective Single-atom Catalysts for Electrocatalytic CO2 Reduction [J].
Wang, Shuo ;
Feng, Shao-Yang ;
Zhao, Cong-Cong ;
Zhao, Ting-Ting ;
Tian, Yu ;
Yan, Li-Kai .
CHEMPHYSCHEM, 2023, 24 (19)
[45]   Laser Synthesis of Nonprecious Metal-Based Single-Atom Catalysts for Oxygen Reduction Reaction [J].
Sha, Yang ;
Moissinac, Francis ;
Zhu, Menghui ;
Huang, Kun ;
Guo, Hengyi ;
Wang, Lingtao ;
Liu, Yuxiang ;
Li, Lin ;
Thomas, Andrew ;
Liu, Zhu .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (44) :51004-51012
[46]   Coaxial Metal-Nitrogen-Carbon Single-Atom Catalysts Boost Acid Hydrogen Peroxide Production [J].
Hu, Hongshang ;
Zhang, Chang ;
Liu, Wei ;
Qi, Huiyao ;
Wang, Haoyu ;
Wang, Xinyu ;
Zhang, Lilong ;
Liu, Lei ;
Bao, Lipiao ;
Alomar, Muneerah ;
Zhang, Jian ;
Lu, Xing .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (15)
[47]   Single-metal-atom catalysts: An emerging platform for electrocatalytic oxygen reduction [J].
Wang, Yong ;
Hu, Fei-Long ;
Mi, Yan ;
Yan, Cheng ;
Zhao, Shenlong .
CHEMICAL ENGINEERING JOURNAL, 2021, 406
[48]   Polarization switching-controlled oxygen evolution and reduction reactions for ferroelectric single-atom catalysts [J].
Li, Wenqing ;
Zhang, Hongyu ;
Xu, Ruoyan ;
Jiang, Xingxing ;
Meng, Haiyu ;
Xue, Xiong-Xiong ;
Zhang, Shengli .
CHEMICAL ENGINEERING JOURNAL, 2025, 505
[49]   Unravelling the oxygen reduction reaction selectivity of single-atom catalysts on N-doped graphene [J].
Shaldehi, Tahereh Jangjooye ;
Exner, Kai S. ;
Viñes, Francesc ;
Illas, Francesc .
Electrochimica Acta, 2025, 537
[50]   Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts [J].
Zhong, Lixiang ;
Li, Shuzhou .
ACS CATALYSIS, 2020, 10 (07) :4313-4318