Unified products for Jordan algebras. Applications

被引:1
作者
Agore, A. L. [1 ,2 ]
Militaru, G. [1 ,3 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
[2] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium
[3] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
关键词
Jordan algebras; Unified products; Non-abelian cohomology; EXTENDING STRUCTURES;
D O I
10.1016/j.jpaa.2022.107268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Jordan algebra A and a vector space V, we describe and classify all Jordan algebras containing A as a subalgebra of codimension dimk(V ) in terms of a non-abelian cohomological type object JA (V, A). Any such algebra is isomorphic to a newly introduced object called unified product A b V. The crossed/twisted product of two Jordan algebras are introduced as special cases of the unified product and the role of the subsequent problem corresponding to each such product is discussed. The non-abelian cohomology H2nab (V, A) associated to two Jordan algebras A and V which classifies all extensions of V by A is also constructed. Several applications and examples are given: we prove that Hnab (k, kn) is identified with the set of all matrices D & ISIN; Mn(k) satisfying 2 D3 - 3 D2 + D = 0, where we consider the abelian Jordan algebra structure on k and kn.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 27 条
  • [1] A class of non-associative Nilpotent Jordan algebras
    Abdelwahab, Hani
    Calderon Martin, Antonio J.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)
  • [2] The factorization problem for Jordan algebras: applications
    Agore, A. L.
    Militaru, G.
    [J]. COLLECTANEA MATHEMATICA, 2023, 74 (03) : 687 - 701
  • [3] Extending structures, Galois groups and supersolvable associative algebras
    Agore, A. L.
    Militaru, G.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 1 - 33
  • [4] Extending Structures I: The Level of Groups
    Agore, A. L.
    Militaru, G.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 831 - 848
  • [5] Extending structures for Lie algebras
    Agore, A. L.
    Militaru, G.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 169 - 193
  • [6] Extending structures II: The quantum version
    Agore, A. L.
    Militaru, G.
    [J]. JOURNAL OF ALGEBRA, 2011, 336 (01) : 321 - 341
  • [7] Agore A. L., 2019, MONOGRAPHS RES NOTES
  • [8] On a certain algebra of quantum mechanics
    Albert, AA
    [J]. ANNALS OF MATHEMATICS, 1934, 35 : 65 - 73
  • [9] Models of the universe based on Jordan algebras
    Ambjorn, J.
    Watabiki, Y.
    [J]. NUCLEAR PHYSICS B, 2020, 955
  • [10] [Anonymous], 1933, Nachr. Akad. Wiss. Gott. Math.-Phys. Kl. I