Recent Advances in Synaptic Nonvolatile Memory Devices and Compensating Architectural and Algorithmic Methods Toward Fully Integrated Neuromorphic Chips

被引:26
作者
Byun, Kanghyeon [1 ]
Choi, Inhyuk [1 ]
Kwon, Soonwan [1 ,2 ]
Kim, Younghoon [1 ]
Kang, Donghoon [1 ]
Cho, Young Woon [1 ]
Yoon, Seung Keun [2 ]
Kim, Sangbum [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr, Res Inst Adv Mat, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Samsung Elect, Samsung Adv Inst Technol, Suwon 16678, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
analog synaptic device; artificial synapse; in-memory computing; neuromorphic computing; neuromorphic system; nonvolatile memory; FIELD-EFFECT TRANSISTORS; PHASE-CHANGE MATERIALS; RANDOM-ACCESS MEMORY; SPIKING NEURAL-NETWORK; COMPUTE-IN-MEMORY; NAND FLASH; LOW-POWER; FLOATING-GATE; MEMRISTOR; RRAM;
D O I
10.1002/admt.202200884
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonvolatile memory (NVM)-based neuromorphic computing has been attracting considerable attention from academia and the industry. Although it is not completely successful yet, remarkable achievements have been reported pertaining to synaptic devices that can leverage NVM capable of storing multiple states. The analog synaptic devices performing computation similar to biological nerve systems are crucial in energy-efficient analog neuromorphic computing systems. To use NVM as an analog synaptic device, researchers focus on improving device characteristics. Among various characteristics, the most challenging one is linearity and symmetry of synaptic weight update that is required for on-chip training. In this regard, this review paper discusses recent synaptic device improvements focusing on novel schemes tailored for each NVM device to improve the linearity and symmetry. In addition to device-level studies, recent research achievements are reviewed expanded up to chip-level studies because in realizing neuromorphic hardware systems beyond a single synaptic device, several considerations and requirements are needed to confirm for high-level design, and accordingly, cooptimize among synaptic devices, synapse arrays, electrical circuits, neural networks, algorithms, and implementation. Also, this review paper introduces various circuit and algorithmic approaches to compensate for the non-ideality of the analog synaptic device.
引用
收藏
页数:38
相关论文
共 270 条
[1]   BEOL-Compatible Superlattice FEFET Analog Synapse With Improved Linearity and Symmetry of Weight Update [J].
Aabrar, Khandker Akif ;
Kirtania, Sharadindu Gopal ;
Liang, Fu-Xiang ;
Gomez, Jorge ;
San Jose, Matthew ;
Luo, Yandong ;
Ye, Huacheng ;
Dutta, Sourav ;
Ravikumar, Priyankka G. ;
Ravindran, Prasanna Venkatesan ;
Khan, Asif Islam ;
Yu, Shimeng ;
Datta, Suman .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (04) :2094-2100
[2]   A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons [J].
Abbott, Jeffrey ;
Ye, Tianyang ;
Krenek, Keith ;
Gertner, Rona S. ;
Ban, Steven ;
Kim, Youbin ;
Qin, Ling ;
Wu, Wenxuan ;
Park, Hongkun ;
Ham, Donhee .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (02) :232-241
[3]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[4]   Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density [J].
Al-Haddad, Ahmed ;
Wang, Chengliang ;
Qi, Haoyuan ;
Grote, Fabian ;
Wen, Liaoyong ;
Bernhard, Joerg ;
Vellacheri, Ranjith ;
Tarish, Samar ;
Nabi, Ghulam ;
Kaiser, Ute ;
Lei, Yong .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23348-23355
[5]  
ALI T, 2020, 2020 IEEE S VLSI TEC, P1, DOI DOI 10.1109/AECT47998.2020.9194222
[6]   A Complementary Metal Oxide Semiconductor Process-Compatible Ferroelectric Tunnel Junction [J].
Ambriz-Vargas, Fabian ;
Kolhatkar, Gitanjali ;
Broyer, Maxime ;
Hadj-Youssef, Azza ;
Nouar, Rafik ;
Sarkissian, Andranik ;
Thomas, Reji ;
Gomez-Yanez, Carlos ;
Gauthier, Marc A. ;
Ruediger, Andreas .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (15) :13262-13268
[7]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[8]   Modeling resistive switching materials and devices across scales [J].
Ambrogio, Stefano ;
Magyari-Kope, Blanka ;
Onofrio, Nicolas ;
Islam, Md Mahbubul ;
Duncan, Dan ;
Nishi, Yoshio ;
Strachan, Alejandro .
JOURNAL OF ELECTROCERAMICS, 2017, 39 (1-4) :39-60
[9]   Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses [J].
Ambrogio, Stefano ;
Ciocchini, Nicola ;
Laudato, Mario ;
Milo, Valerio ;
Pirovano, Agostino ;
Fantini, Paolo ;
Ielmini, Daniele .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[10]  
An HY, 2017, INT SYM QUAL ELECT, P1, DOI 10.1109/ISQED.2017.7918283