Addressing complex state constraints in the integral barrier Lyapunov function-based adaptive tracking control

被引:9
作者
Tian, Dongzuo [1 ]
Song, Xingyong [1 ]
机构
[1] Texas A&M Univ, Coll Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Barrier Lyapunov function; adaptive control; strict feedback; uncertain nonlinear system; SYSTEMS;
D O I
10.1080/00207179.2022.2036371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the state-constrained control problem with complex constrained regions, this paper presents an Integral Barrier Lyapunov Function-based adaptive backstepping scheme for the tracking control. The Barrier Lyapunov Function approach provides an effective tool to embed the barrier terms into the Lyapunov function, enabling the integration of barrier avoidance and closed-loop stabilisation. In the literature, previous works in the area of Barrier Lyapunov Function mostly considered a simple hyperrectangle shape of the constrained region. In this study, the complex barrier region is for the first time introduced to the Barrier Lyapunov Function framework. A novel recursive design procedure is constructed for a class of uncertain nonlinear parametric systems, ensuring the closed-loop signals are all bounded and the tracking errors are convergent. Finally, the proposed method is applied to a numerical example, illustrating the efficacy of this work.
引用
收藏
页码:1202 / 1209
页数:8
相关论文
共 24 条
[1]   Control Barrier Function Based Quadratic Programs for Safety Critical Systems [J].
Ames, Aaron D. ;
Xu, Xiangru ;
Grizzle, Jessy W. ;
Tabuada, Paulo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) :3861-3876
[2]   Reference governor for constrained nonlinear systems [J].
Bemporad, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (03) :415-419
[3]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[4]  
Boyd Stephen., 2009, Convex optimization, DOI [10.1017/CBO9780511804441, DOI 10.1017/CBO9780511804441]
[5]  
Dòria-Cerezo A, 2014, IEEE INTL CONF CONTR, P911, DOI 10.1109/CCA.2014.6981452
[6]   Adaptive Control of a Flexible Crane System With the Boundary Output Constraint [J].
He, Wei ;
Zhang, Shuang ;
Ge, Shuzhi Sam .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (08) :4126-4133
[7]   Robust adaptive boundary control of a flexible marine riser with vessel dynamics [J].
He, Wei ;
Ge, Shuzhi Sam ;
How, Bernard Voon Ee ;
Choo, Yoo Sang ;
Hong, Keum-Shik .
AUTOMATICA, 2011, 47 (04) :722-732
[8]  
Kristic M., 1995, NONLINEAR ADAPTIVE C
[9]   Adaptive control of nonlinear systems with full state constraints using Integral Barrier Lyapunov Functionals [J].
Li, Dong-Juan ;
Li, Jing ;
Li, Shu .
NEUROCOMPUTING, 2016, 186 :90-96
[10]   Distributed Attitude Coordinated Control of Multiple Spacecraft With Attitude Constraints [J].
Li, Dongyu ;
Ma, Guangfu ;
Li, Chuanjiang ;
He, Wei ;
Mei, Jie ;
Ge, Shuzhi Sam .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (05) :2233-2245