Vertex-Edge Domination in Interval and Bipartite Permutation Graphs

被引:3
作者
Paul, Subhabrata [1 ]
Pradhan, Dinabandhu [2 ]
Verma, Shaily [3 ]
机构
[1] Indian Inst Technol, Dept Math, Patna, Bihar, India
[2] Indian Inst Technol ISM, Dept Math & Comp, Dhanbad, Bihar, India
[3] Indian Inst Technol, Dept Math, Delhi, India
关键词
vertex-edge domination; linear time algorithm; interval graphs; bipartite permutation graphs; NUMBER;
D O I
10.7151/dmgt.2411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a graph G =(V, E), a vertex u is an element of V ve-dominates all edges incident to any vertex of N-G[u]. A set D V is a vertex-edge dominating set if, for any edge e is an element of E, there exists a vertex u is an element of D such that u ve-dominates e. Given a graph G, our goal is to find a minimum cardinality ve-dominating set of G. In this paper, we designed two linear-time algorithms to find a minimum cardinality ve-dominating set for interval and bipartite permutation graphs.
引用
收藏
页码:947 / 963
页数:17
相关论文
共 20 条
[1]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[2]   Total vertex-edge domination [J].
Boutrig, Razika ;
Chellali, Mustapha .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) :1820-1828
[3]   Vertex-edge domination in graphs [J].
Boutrig, Razika ;
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
AEQUATIONES MATHEMATICAE, 2016, 90 (02) :355-366
[4]   A note on independent vertex edge domination in graphs [J].
Chen, Xue-gang ;
Yin, Kai ;
Gao, Ting .
DISCRETE OPTIMIZATION, 2017, 25 :1-5
[5]  
Chitra S., 2012, P INT MATH FORUM, V7, P233
[6]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[7]   Algorithm and hardness results on hop domination in graphs [J].
Henning, Michael A. ;
Pal, Saikat ;
Pradhan, D. .
INFORMATION PROCESSING LETTERS, 2020, 153
[8]  
Jena Sangram K., 2020, Algorithms and Discrete Applied Mathematics. 6th International Conference, CALDAM 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12016), P67, DOI 10.1007/978-3-030-39219-2_6
[9]   THE OUTER-CONNECTED VERTEX EDGE DOMINATION NUMBER OF A TREE [J].
Krishnakumari, Balakrishna ;
Venkatakrishnan, Yanamandram Balasubramanian .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01) :361-369
[10]  
Krishnakumari B, 2017, DISCRET MATH ALGORIT, V9, DOI 10.1142/S1793830917500458