Parametric Continuous-Time Blind System Identification

被引:1
|
作者
Elton, Augustus [1 ]
Gonzalez, Rodrigo A. [2 ]
Welsh, James S. [1 ]
Rojas, Cristian R. [3 ]
Fu, Minyue [1 ]
机构
[1] Univ Newcastle, Coll Engn Sci & Environm, Univ Dr, Callaghan, NSW 2308, Australia
[2] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[3] KTH Royal Inst Technol, Div Decis & Control Syst, Stockholm, Sweden
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
关键词
MODELS;
D O I
10.1109/CDC49753.2023.10383961
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the blind system identification problem for continuous-time systems is considered. A direct continuous-time estimator is proposed by utilising a state-variable-filter least squares approach. In the proposed method, coupled terms between the numerator polynomial of the system and input parameters appear in the parameter vector which are subsequently separated using a rank-1 approximation. An algorithm is then provided for the direct identification of a single-input single-output linear time-invariant continuous-time system which is shown to satisfy the property of correctness under some mild conditions. Monte Carlo simulations demonstrate the performance of the algorithm and verify that a model and input signal can be estimated to a proportion of their true values.
引用
收藏
页码:1474 / 1479
页数:6
相关论文
共 50 条
  • [1] Kernel-based continuous-time system identification: A parametric approximation
    Scandella, Matteo
    Moreschini, Alessio
    Parisini, Thomas
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1492 - 1497
  • [2] MULTIVARIABLE IDENTIFICATION OF CONTINUOUS-TIME FRACTIONAL SYSTEM
    Thomassin, Magalie
    Malti, Rachid
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1187 - 1195
  • [3] Continuous-Time System Identification using Binary Measurements
    Pouliquen, Mathieu
    Goudjil, Abdelhak
    Gehan, Olivier
    Pigeon, Eric
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3787 - 3792
  • [4] Direct continuous-time parameter identification of excitation system with the generator online
    Kian, Mahtab
    Najafabadi, Touraj Abbasian
    Lesani, Hamid
    Kazemi, Fatemeh
    2018 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2018,
  • [5] Recursive system identification for coefficient estimation of continuous-time fractional order systems
    Duhe, Jean-Francois
    Victor, Stephane
    Melchior, Pierre
    Abdelmounen, Youssef
    Roubertie, Francois
    IFAC PAPERSONLINE, 2021, 54 (07): : 114 - 119
  • [6] Convergence analysis of refined instrumental variable method for continuous-time system identification
    Liu, X.
    Wang, J.
    Zheng, W. X.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (07) : 868 - 877
  • [7] Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation
    Krishnanathan, Kirubhakaran
    Anderson, Sean R.
    Billings, Stephen A.
    Kadirkamanathan, Visakan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (15) : 3537 - 3544
  • [8] Stochastic system transformation using generalized orthonormal basis functions with applications to continuous-time system identification
    Ohta, Yoshito
    AUTOMATICA, 2011, 47 (05) : 1001 - 1006
  • [9] Continuous-Time Input-Output Linear Dynamic System Identification using Sampled Data
    Figwer, Jaroslaw
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 712 - 717
  • [10] An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
    Gonzalez, Rodrigo A.
    Cedeno, Angel L.
    Coronel, Maria
    Aguero, Juan C.
    Rojas, Cristian R.
    IFAC PAPERSONLINE, 2023, 56 (02): : 4204 - 4209