Chaos theory is an important branch of mathematics and its theory has been widely applied in many fields such as physics and medicine. Based on existing spectroscopic techniques, this paper used chaos theory as a research method for nonlinear time series to analyze Raman spectral time domain curves in order to improve the performance of disease diagnostic models and explore a new paradigm of spectroscopic technology for intelligent assisted disease diagnosis. We quantitatively identified the chaotic characteristics of time domain Raman spectra by three methods, extracted chaotic features such as correlation dimension and Kolmogorov entropy, and used the chaotic features as input to Extreme Learning Machine (ELM), Back Propagation Neural Network (BPNN), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) to diagnose patients with lung cancer (LC), glioma, renal cell carcinoma (RCC) and esophageal cancer (EC). The Raman spectra were also analyzed by traditional spectral feature extraction & modelling method, and the results of traditional spectral feature extraction & modelling method and chaotic feature modelling method were compared. The experimental results showed that the extraction of effective chaotic features in the full spectral range could achieve comparable diagnostic results with the traditional spectral feature extraction & modelling method. To further validate the effectiveness of chaos theory in Raman spectral data, the full spectrum was divided into three consecutive subsequences of 500-1000, 1000-1500, and 1500-2000 cm(-1), and the above experimental steps were repeated respectively, and the results of the traditional spectral feature extraction & modelling method and chaotic feature modelling were compared. The results showed that as the spectral range was split into consecutive subsequences, the diagnostic performance of the chaotic features in each subsequence performed better than that of conventional spectral analysis techniques. In this study, the technique bridges the gap in the application of chaotic signals to Raman spectroscopy techniques, focuses on global features in the time domain profile of Raman spectra, and demonstrates the significant value of chaos theory in artificial intelligence-assisted spectroscopic medical diagnosis.
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
Atif, M.
Alsalhi, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
Alsalhi, M. S.
Devanesan, S.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
机构:
Air Force Off Sci Res, Arlington, VA 22203 USAAir Force Off Sci Res, Arlington, VA 22203 USA
Blasch, Erik
Pham, Tien
论文数: 0引用数: 0
h-index: 0
机构:
Army Res Lab, Adelphi, MD 20783 USAAir Force Off Sci Res, Arlington, VA 22203 USA
Pham, Tien
Chong, Chee-Yee
论文数: 0引用数: 0
h-index: 0
机构:Air Force Off Sci Res, Arlington, VA 22203 USA
Chong, Chee-Yee
Koch, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
Fraunhofer FKIE, D-53343 Wachtberg, Germany
Univ Bonn, D-53113 Bonn, GermanyAir Force Off Sci Res, Arlington, VA 22203 USA
Koch, Wolfgang
Leung, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calgary, Calgary, AB T2N 1N4, CanadaAir Force Off Sci Res, Arlington, VA 22203 USA
Leung, Henry
Braines, Dave
论文数: 0引用数: 0
h-index: 0
机构:
IBM Corp, Portsmouth SO21 2JN, Hants, England
Cardiff Univ, Cardiff CF10 3AT, Wales
IBM United Kingdom Ltd, Portsmouth SO21 2JN, Hants, EnglandAir Force Off Sci Res, Arlington, VA 22203 USA
Braines, Dave
Abdelzaher, Tarek
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Urbana, IL 61801 USAAir Force Off Sci Res, Arlington, VA 22203 USA
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
Atif, M.
Alsalhi, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
Alsalhi, M. S.
Devanesan, S.
论文数: 0引用数: 0
h-index: 0
机构:
King Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
King Saud Univ, Dept Phys & Astron, Coll Sci, Res Chair Laser Diag Canc, Riyadh, Saudi ArabiaKing Saud Univ, Phys & Astron Dept, Coll Sci, Riyadh, Saudi Arabia
机构:
Air Force Off Sci Res, Arlington, VA 22203 USAAir Force Off Sci Res, Arlington, VA 22203 USA
Blasch, Erik
Pham, Tien
论文数: 0引用数: 0
h-index: 0
机构:
Army Res Lab, Adelphi, MD 20783 USAAir Force Off Sci Res, Arlington, VA 22203 USA
Pham, Tien
Chong, Chee-Yee
论文数: 0引用数: 0
h-index: 0
机构:Air Force Off Sci Res, Arlington, VA 22203 USA
Chong, Chee-Yee
Koch, Wolfgang
论文数: 0引用数: 0
h-index: 0
机构:
Fraunhofer FKIE, D-53343 Wachtberg, Germany
Univ Bonn, D-53113 Bonn, GermanyAir Force Off Sci Res, Arlington, VA 22203 USA
Koch, Wolfgang
Leung, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calgary, Calgary, AB T2N 1N4, CanadaAir Force Off Sci Res, Arlington, VA 22203 USA
Leung, Henry
Braines, Dave
论文数: 0引用数: 0
h-index: 0
机构:
IBM Corp, Portsmouth SO21 2JN, Hants, England
Cardiff Univ, Cardiff CF10 3AT, Wales
IBM United Kingdom Ltd, Portsmouth SO21 2JN, Hants, EnglandAir Force Off Sci Res, Arlington, VA 22203 USA
Braines, Dave
Abdelzaher, Tarek
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Urbana, IL 61801 USAAir Force Off Sci Res, Arlington, VA 22203 USA