High-Performance Thick Cathode Based on Polyhydroxyalkanoate Binder for Li Metal Batteries

被引:8
作者
Kang, Dong Hyuk [1 ]
Park, Minhyuck [1 ]
Lee, Jeonghun [1 ]
Kim, Chan Yeol [1 ]
Park, Jimin [1 ]
Lee, Youn-Ki [2 ]
Hyun, Jong Chan [1 ]
Ha, Son [1 ]
Kwak, Jin Hwan [3 ]
Yoon, Juhee [4 ]
Kim, Hyemin [4 ]
Kim, Hyun Soo [1 ]
Kim, Do Hyun [1 ]
Kim, Sangmin [5 ]
Park, Ji Yong [6 ]
Jang, Robin [7 ]
Yang, Seung Jae [7 ]
Lim, Hee-Dae [8 ]
Cho, Se Youn [2 ]
Jin, Hyoung-Joon [4 ]
Lee, Seungjin [7 ]
Hwang, Yunil [7 ]
Yun, Young Soo [1 ,3 ,9 ]
机构
[1] Korea Univ, KIST Grad Sch Converging Sci & Technol, 145 Anam Ro, Seoul 02841, South Korea
[2] Korea Inst Sci & Technol KIST, Carbon Composite Mat Res Ctr, 92 Chundong Ro, Wanju Gun 55324, Jeollabuk Do, South Korea
[3] Korea Inst Sci & Technol KIST, Energy Storage Res Ctr, 5,14 Gil Hwaraong Ro, Seoul 02792, South Korea
[4] Inha Univ, Program Environm & Polymer Engn, Incheon 22212, South Korea
[5] Korea Inst Sci & Technol KIST, Adv Anal Data Ctr, 5,14 Gil Hwaraong Ro, Seoul 02792, South Korea
[6] Inha Univ, Dept Chem & Chem Engn, Adv Nanohybrids Lab, 100 Inha Ro, Incheon 22212, South Korea
[7] CJ Cheiljedang Corp, 55 Gwanggyo Ro,42Beon Gil, Suwon 16495, South Korea
[8] Hanyang Univ, Dept Chem Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[9] Korea Univ, Dept Integrat Energy Engn, 145 Anam Ro, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Thick cathode; Polyhydroxyalkanoate binder; Nano-bridging; Conductive nano-fibrillar network; Lithium metal battery; NI-RICH; ELECTRODE ARCHITECTURES; ENERGY-DENSITY;
D O I
10.1007/s42765-023-00347-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thick cathodes can overcome the low capacity issues, which mostly hamper the performance of the conventional active cathode materials, used in rechargeable Li batteries. However, the typical slurry-based method induces cracking and flaking during the fabrication of thick electrodes. In addition, a significant increase in the charge-transfer resistance and local current overload results in poor rate capabilities and cycling stabilities, thereby limiting electrode thickening. In this study, a synergistic dual-network combination strategy based on a conductive nanofibrillar network (CNN) and a nano-bridging amorphous polyhydroxyalkanoate (aPHA) binder is used to demonstrate the feasibility of constructing a high-performance thick cathode. The CNN and aPHA dual network facilitates the fabrication of a thick cathode (>= 250 mu m thickness and >= 90 wt% active cathode material) by a mass-producible slurry method. The thick cathode exhibited a high rate capability and excellent cycling stability. In addition, the thick cathode and thin Li metal anode pair (Li//t-NCM) exhibited an optimal energy performance, affording high-performance Li metal batteries with a high areal energy of similar to 25.3 mW h cm(-2), a high volumetric power density of similar to 1720 W L-1, and an outstanding specific energy of similar to 470 W h kg(-1) at only 6 mA h cm(-2).
引用
收藏
页码:214 / 228
页数:15
相关论文
共 50 条
[1]   Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries [J].
Abebe, Eyob Belew ;
Yang, Chun-Chen ;
Wu, She-Huang ;
Chien, Wen-Chen ;
Li, Ying-Jeng James .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) :14295-14308
[2]   Thick Electrode Design for Facile Electron and Ion Transport: Architectures, Advanced Characterization, and Modeling [J].
Arnot, David J. ;
Mayilvahanan, Karthik S. ;
Hui, Zeyu ;
Takeuchi, Kenneth J. ;
Marschilok, Amy C. ;
Bock, David C. ;
Wang, Lei ;
West, Alan C. ;
Takeuchi, Esther S. .
ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (04) :472-483
[3]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[4]   Highly Conductive, Lightweight, Low-Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors [J].
Chen, Chaoji ;
Zhang, Ying ;
Li, Yiju ;
Kuang, Yudi ;
Song, Jianwei ;
Luo, Wei ;
Wang, Yanbin ;
Yao, Yonggang ;
Pastel, Glenn ;
Xie, Jia ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[5]   Emerging Organic Surface Chemistry for Si Anodes in Lithium-Ion Batteries: Advances, Prospects, and Beyond [J].
Chen, Zidong ;
Soltani, Askar ;
Chen, Yungui ;
Zhang, Qiaobao ;
Davoodi, Ali ;
Hosseinpour, Saman ;
Peukert, Wolfgang ;
Liu, Wei .
ADVANCED ENERGY MATERIALS, 2022, 12 (32)
[6]   DRYING OF GRANULAR CERAMIC FILMS .1. EFFECT OF PROCESSING VARIABLES ON CRACKING BEHAVIOR [J].
CHIU, RC ;
GARINO, TJ ;
CIMA, MJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (09) :2257-2264
[7]   Ultra strong pyroprotein fibres with long-range ordering [J].
Cho, Se Youn ;
Yun, Young Soo ;
Jang, Dawon ;
Jeon, Jun Woo ;
Kim, Byung Hoon ;
Lee, Sungho ;
Jin, Hyoung-Joon .
NATURE COMMUNICATIONS, 2017, 8
[8]   Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes [J].
Gallagher, Kevin G. ;
Trask, Stephen E. ;
Bauer, Christoph ;
Woehrle, Thomas ;
Lux, Simon F. ;
Tschech, Matthias ;
Lamp, Peter ;
Polzin, Bryant J. ;
Ha, Seungbum ;
Long, Brandon ;
Wu, Qingliu ;
Lu, Wenquan ;
Dees, Dennis W. ;
Jansen, Andrew N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A138-A149
[9]   Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries [J].
Gomez-Martin, Aurora ;
Reissig, Friederike ;
Frankenstein, Lars ;
Heidbuchel, Marcel ;
Winter, Martin ;
Placke, Tobias ;
Schmuch, Richard .
ADVANCED ENERGY MATERIALS, 2022, 12 (08)
[10]   Competitive Doping Chemistry for Nickel-Rich Layered Oxide Cathode Materials [J].
Guo, Yu-Jie ;
Zhang, Chao-Hui ;
Xin, Sen ;
Shi, Ji-Lei ;
Wang, Wen-Peng ;
Fan, Min ;
Chang, Yu-Xin ;
He, Wei-Huan ;
Wang, Enhui ;
Zou, Yu-Gang ;
Yang, Xin'an ;
Meng, Fanqi ;
Zhang, Yu-Ying ;
Lei, Zhou-Quan ;
Yin, Ya-Xia ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (21)