Electro-thermal analysis of hybrid fluid through wavy divergent channel

被引:2
|
作者
Bilal, Muhammad [1 ]
Javid, Khurram [2 ]
Khan, Sami Ullah [3 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan
[2] Northern Univ, Dept Math, Wattar Nowshera, Pakistan
[3] Namal Univ, Dept Math, Mianwali 42250, Pakistan
关键词
Complex peristaltic waves; electro-osmosis applications; hybrid nanofluids; peristalsis flow; pumping phenomena; PERISTALTIC TRANSPORT; HEAT-TRANSFER; NANOFLUIDS; FLOW; DESIGN; PUMP; DRIVEN; PART;
D O I
10.1080/10407782.2023.2292195
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the bio-medical domains, the transportation of physiological fluids within the human body like chyme movement in the gastrointestinal tract, bolus through the esophagus, blood circulation in the small vessels and heart chambers etc., where the channels are nonuniform in nature. Due to diverse applications of nonuniform channel, in the current mathematical analysis the peristaltic flow of hybrid fluid (containing particular nanoparticles) under an applied axial electric field through the nonuniform channel is presented. To observe hybrid fluid performance, a set of modified hybrid fluid that comprise nanoparticles of titanium dioxide, aluminum trioxide and copper with water as a base fluid is considered in the analysis. Taking into consideration the long wavelength and low Reynolds number assumptions. Poisson-Boltzmann equations are linearized by the Debye-Huckel approximation. Solutions for the axial velocity, average flow rate, pressure gradient, pumping phenomena, heat transfer phenomena and volumetric fraction are obtained analytically. The physical impacts of numerous embedded parameters on the above-mentioned features are argued through graphs which are plotted by Mathematica 11.0 Software. Additionally, the influence of porous medium and nonuniform nature of flow geometry are also discussed in detail. The study could be useful in medical as well as the industrial domains since the electro-osmotic phenomenon is observed throughout the human body where through the osmosis, the body absorbs the nutrients from the food and toxins are removed from the blood stream. Also the nanofluids are widely used in medicines for drug delivery. Also in industries, electro-osmosis has many applications in microchips, biophysics, microfluidics, gas and oil manufacture and separations through the membranes etc.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Biomechanics of electro-kinetically modulated peristaltic motion of bio-fluid through a divergent complex wavy channel
    Javid, Khurram
    Asghar, Zeeshan
    Rehman, Fiaz Ur
    CANADIAN JOURNAL OF PHYSICS, 2021, 99 (02) : 70 - 79
  • [2] Analysis of a hybrid model for the electro-thermal behavior of semiconductor heterostructures
    Glitzky, Annegret
    Liero, Matthias
    Nika, Grigor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [3] ELECTRO-THERMAL INSTABILITY IN SEMICONDUCTORS WITH A SWITCHING CHANNEL
    SUKHANOV, AA
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1978, 12 (12): : 1390 - 1395
  • [4] Electro-thermal Analysis of a 65 nm Channel MOSFET Under The HPEMP
    Li, Yong
    Xie, Haiyan
    Yan, Hui
    Wang, Jianguo
    2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [5] MODELING AND ANALYSIS OF ELECTRO-THERMAL MICROACTUATORS
    Lo, Chih-Ching
    Lin, Meng-Ju
    Hwan, Chung-Li
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2009, 32 (03) : 351 - 360
  • [6] Electro-Thermal Analysis of Contact Resistance
    Pandey, Nitin
    Jain, Ishant
    Reddy, Sudhakar
    Gulhane, Nitin P.
    INTERNATIONAL CONFERENCE ON INVENTIVE RESEARCH IN MATERIAL SCIENCE AND TECHNOLOGY (ICIRMCT 2018), 2018, 1966
  • [7] Analysis of the Fuses' Electro-Thermal Field
    Plesca, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2010, (08) : 85 - 88
  • [8] Numerical analysis of fluid dynamics and thermal characteristics inside a wavy channel
    Mereu, Riccardo
    Colombo, Emanuela
    Inzoli, Fabio
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2013, 23 (06) : 1049 - 1062
  • [9] Electro-thermal simulation of semiconductor devices and hybrid circuits
    Menozzi, R.
    De Iaco, E.
    Sozzi, G.
    Cova, P.
    Delmonte, N.
    Zampardi, P.
    Kwok, K.
    Cismaru, C.
    Metzger, A.
    2006 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS & DEVICES, 2006, : 1 - +
  • [10] Thermal networks for electro-thermal analysis of power devices
    Codecasa, L
    D'Amore, D
    Maffezzoni, P
    MICROELECTRONICS JOURNAL, 2001, 32 (10-11) : 817 - 822