Machine learning for skin permeability prediction: random forest and XG boost regression

被引:7
作者
Ita, Kevin [1 ,2 ]
Prinze, Joyce [1 ]
机构
[1] Touro Univ, Coll Pharm, Vallejo, CA USA
[2] Touro Univ, Coll Pharm, Vallejo, CA 94592 USA
关键词
Skin permeability; random forest; transdermal; pandas; descriptors; PERCUTANEOUS-ABSORPTION; NEUTRAL MOLECULES; DIFFUSION; MODELS;
D O I
10.1080/1061186X.2023.2284096
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Machine learning algorithms that can quickly and easily estimate skin permeability (Kp) are increasingly being used in drug delivery research. The linear free energy relationship (LFER) developed by Abraham is a practical technique for predicting Kp. The permeability coefficients and Abraham solute descriptor values for 175 organic compounds have been documented in the scientific literature.Purpose: The purpose of this project was to use a publicly available dataset to make skin permeability predictions using the random forest and XBoost regression techniques.Methods: We employed Pandas-based methods in JupyterLab to predict permeability coefficient (Kp) from solute descriptors (excess molar refraction [E], combined dipolarity/polarizability [S], overall solute hydrogen bond acidity and basicity [A and B], and the McGowan's characteristic molecular volume [V]).Results: The random forest and XG Boost regression models established statistically significant association between the descriptors and the skin permeability coefficient.
引用
收藏
页码:57 / 65
页数:9
相关论文
共 46 条
[2]   Human skin permeation and partition: General linear free-energy relationship analyses [J].
Abraham, MH ;
Martins, F .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 93 (06) :1508-1523
[3]   Determination of solvation descriptors for ionic species: Hydrogen bond acidity and basicity [J].
Abraham, MH ;
Zhao, YH .
JOURNAL OF ORGANIC CHEMISTRY, 2004, 69 (14) :4677-4685
[4]   Equations for the Transfer of Neutral Molecules and Ionic Species from Water to Organic phases [J].
Abraham, Michael H. ;
Acree, William E., Jr. .
JOURNAL OF ORGANIC CHEMISTRY, 2010, 75 (04) :1006-1015
[5]   Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J].
Ali, Sajid ;
Abuhmed, Tamer ;
El-Sappagh, Shaker ;
Muhammad, Khan ;
Alonso-Moral, Jose M. ;
Confalonieri, Roberto ;
Guidotti, Riccardo ;
Del Ser, Javier ;
Diaz-Rodriguez, Natalia ;
Herrera, Francisco .
INFORMATION FUSION, 2023, 99
[6]   The application of machine learning to the modelling of percutaneous absorption: An overview and guide [J].
Ashrafi, P. ;
Moss, G. P. ;
Wilkinson, S. C. ;
Davey, N. ;
Sun, Y. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2015, 26 (03) :181-204
[7]   Using a cohort study of diabetes and peripheral artery disease to compare logistic regression and machine learning via random forest modeling [J].
Austin, Andrea M. ;
Ramkumar, Niveditta ;
Gladders, Barbara ;
Barnes, Jonathan A. ;
Eid, Mark A. ;
Moore, Kayla O. ;
Feinberg, Mark W. ;
Creager, Mark A. ;
Bonaca, Marc ;
Goodney, Philip P. .
BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
[8]   Modeling and Prediction of Solvent Effect on Human Skin Permeability using Support Vector Regression and Random Forest [J].
Baba, Hiromi ;
Takahara, Jun-ichi ;
Yamashita, Fumiyoshi ;
Hashida, Mitsuru .
PHARMACEUTICAL RESEARCH, 2015, 32 (11) :3604-3617
[9]   Machine learning models to accelerate the design of polymeric long-acting injectables [J].
Bannigan, Pauric ;
Bao, Zeqing ;
Hickman, Riley J. ;
Aldeghi, Matteo ;
Hase, Florian ;
Aspuru-Guzik, Alan ;
Allen, Christine .
NATURE COMMUNICATIONS, 2023, 14 (01)
[10]   Organic compounds percutaneous penetration in vivo in man: Relationship to mathematical predictive model [J].
Burli, Anuk ;
Law, Rebecca M. ;
Rodriguez, Jocelyn ;
Maibach, Howard I. .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2020, 112