A novel conceptual flood inundation model for large scale data-scarce regions

被引:4
|
作者
Unnithan, S. L. Kesav [1 ,2 ]
Biswal, Basudev [2 ]
Rudiger, Christoph [3 ,4 ]
Dubey, Amit Kumar [5 ]
机构
[1] IITB Monash Res Acad, Mumbai, India
[2] Indian Inst Technol, Dept Civil Engn, Mumbai, India
[3] Monash Univ, Dept Civil Engn, Clayton, Australia
[4] Bur Meteorol, Sci & Innovat Grp, Melbourne, Australia
[5] Indian Space Res Org, Space Applicat Ctr, Ahmadabad, India
关键词
Flood inundation model; Conceptual framework; Data-scarcity; INFORMATION;
D O I
10.1016/j.envsoft.2023.105863
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel conceptual flood inundation model that can be coupled with any hydrological model to generate the probabilistic flood extent maps for a given time step. We generate the runoff rasters using the dynamic Budyko hydrological model that uses the regional IMD/CPC precipitation datasets and the global JAXA GSMaP gauge-precipitation (V7) product over Kerala/Louisiana flood events during August 2018/2016. A freely available global dataset is used for obtaining river geometry information and topographic information is obtained from ASTER/SRTM DEM and localised LiDAR DEM. We evaluated the proposed model using the ground observed flood points from the state disaster management agency for Kerala and flood maps published by USGS for Louisiana. The proposed model captured similar to 45% of flooding during peak flood days while taking similar to 15 min for each run on a daily time step on a desktop computer.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Unlocking watershed mysteries: Innovative regionalization of hydrological model parameters in data-scarce regions
    Mihret, Temesgen T.
    Zemale, Fasikaw A.
    Worqlul, Abeyou W.
    Ayalew, Ayenew D.
    Fohrer, Nicola
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2025, 57
  • [22] Estimation of spatially distributed groundwater recharge in data-scarce regions
    Belay, Ashebir Sewale
    Yenehun, Alemu
    Nigate, Fenta
    Tilahun, Seifu A.
    Dessie, Mekete
    Moges, Michael M.
    Chen, Margaret
    Fentie, Derbew
    Adgo, Enyew
    Nyssen, Jan
    Walraevens, Kristine
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 56
  • [23] Expert-based versus data-driven flood damage models: A comparative evaluation for data-scarce regions
    Malgwi, Mark Bawa
    Schlogl, Matthias
    Keiler, Margreth
    INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2021, 57
  • [24] Application of the WRF model rainfall product for the localized flood hazard modeling in a data-scarce environment
    Y. Umer
    V. Jetten
    J. Ettema
    L. Lombardo
    Natural Hazards, 2022, 111 : 1813 - 1844
  • [25] Prediction of Runoff in Watersheds Located within Data-Scarce Regions
    Ghanim, Abdulnoor A. J.
    Beddu, Salmia
    Abd Manan, Teh Sabariah Binti
    Al Yami, Saleh H.
    Irfan, Muhammad
    Mursal, Salim Nasar Faraj
    Kamal, Nur Liyana Mohd
    Mohamad, Daud
    Machmudah, Affiani
    Yavari, Saba
    Mohtar, Wan Hanna Melini Wan
    Ahmad, Amirrudin
    Rasdi, Nadiah Wan
    Khan, Taimur
    SUSTAINABILITY, 2022, 14 (13)
  • [26] Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan
    Annamaria Saponaro
    Marco Pilz
    Marc Wieland
    Dino Bindi
    Bolot Moldobekov
    Stefano Parolai
    Bulletin of Engineering Geology and the Environment, 2015, 74 : 1117 - 1136
  • [27] Forecasting fierce floods with transferable AI in data-scarce regions
    Wang, Hui-Min
    Peng, Xiao
    He, Xiaogang
    INNOVATION, 2024, 5 (04):
  • [28] Flood damage models and flood damage factors in a data-scarce river basin, Nigeria
    Komolafe, Akinola Adesuji
    Ogundare, Adedeji Seun
    Olorunfemi, Idowu Ezekiel
    Oguntunde, Philip Gbenro
    ENVIRONMENTAL HAZARDS-HUMAN AND POLICY DIMENSIONS, 2024,
  • [29] Application of the WRF model rainfall product for the localized flood hazard modeling in a data-scarce environment
    Umer, Y.
    Jetten, V
    Ettema, J.
    Lombardo, L.
    NATURAL HAZARDS, 2022, 111 (02) : 1813 - 1844
  • [30] Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan
    Saponaro, Annamaria
    Pilz, Marco
    Wieland, Marc
    Bindi, Dino
    Moldobekov, Bolot
    Parolai, Stefano
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2015, 74 (04) : 1117 - 1136