Study of High-Energy Proton Irradiation Effects in Top-Gate Graphene Field-Effect Transistors

被引:0
|
作者
Lu, Xiaojie [1 ,2 ]
Guo, Hongxia [1 ,3 ]
Lei, Zhifeng [2 ]
Peng, Chao [2 ]
Zhang, Zhangang [2 ]
Zhang, Hong [2 ]
Ma, Teng [2 ]
Feng, Yahui [3 ]
Ma, Wuying [3 ]
Zhong, Xiangli [1 ]
Li, Jifang [1 ]
Li, Yangfan [1 ]
Bai, Ruxue [1 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
[2] China Elect Prod Reliabil & Environm Testing Res I, Sci & Technol Reliabil Phys & Applicat Elect Compo, Guangzhou 510610, Peoples R China
[3] Northwest Inst Nucl Technol, Xian 710024, Peoples R China
基金
中国国家自然科学基金;
关键词
top-gate graphene field-effect transistors (GFETs); 20 MeV proton irradiation; technical computer-aided design (TCAD); ionization energy loss; GAMMA-RAY IRRADIATION; DEFECT FORMATION; X-RAY; DEPENDENCE; DEVICE; DAMAGE; GAS;
D O I
10.3390/electronics12234837
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the effects of high-energy proton irradiation on top-gate graphene field-effect transistors (GFETs) were investigated by using 20 MeV protons. The basic electrical parameters of the top-gate GFETs were measured before and after proton irradiation with a fluence of 1 x 1011 p/cm2 and 5 x 1011 p/cm2, respectively. Decreased saturation current, increased Dirac sheet resistance, and negative drift in the Dirac voltage in response to proton irradiation were observed. According to the transfer characteristic curves, it was found that the carrier mobility was reduced after proton irradiation. The analysis suggests that proton irradiation generates a large net positive charge in the gate oxide layer, which induces a negative drift in the Dirac voltage. Introducing defects and increased impurities at the gate oxide/graphene interface after proton irradiation resulted in enhanced Coulomb scattering and reduced mobility of the carriers, which in turn affects the Dirac sheet resistance and saturation current. After annealing at room temperature, the electrical characteristics of the devices were partially restored. The results of the technical computer-aided design (TCAD) simulation indicate that the reduction in carrier mobility is the main reason for the degradation of the electrical performance of the device. Monte Carlo simulations were conducted to determine the ionization and nonionization energy losses induced by proton incidence in top-gate GFET devices. The simulation data show that the ionization energy loss is the primary cause of the degradation of the electrical performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics
    Jeong, Beomjin
    Wuttke, Michael
    Zhou, Yazhou
    Muellen, Klaus
    Narita, Akimitsu
    Asadi, Kamal
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (06) : 2667 - 2671
  • [2] Extraction of the Interface State Density of Top-Gate Graphene Field-Effect Transistors
    Jung, Ukjin
    Kim, Yun Ji
    Kim, Yonghun
    Lee, Young Gon
    Lee, Byoung Hun
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (04) : 408 - 410
  • [3] Top-Gate Organic Field-Effect Transistors with High Environmental and Operational Stability
    Hwang, Do Kyung
    Fuentes-Hernandez, Canek
    Kim, Jungbae
    Potscavage, William J., Jr.
    Kim, Sung-Jin
    Kippelen, Bernard
    ADVANCED MATERIALS, 2011, 23 (10) : 1293 - +
  • [4] Effect of high-energy proton irradiation of ZnO-nanowire field-effect transistors
    Hong, Woong-Ki
    Kwon, Soon-Shin
    Jo, Gunho
    Song, Sunghoon
    Choi, Byung Sang
    Lee, Takhee
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (03) : 848 - 852
  • [5] Top-gate organic field-effect transistors fabricated on paper with high operational stability
    Wang, Cheng-Yin
    Fuentes-Hernandez, Canek
    Chou, Wen-Fang
    Kippelen, Bernard
    ORGANIC ELECTRONICS, 2017, 41 : 340 - 344
  • [6] Top-gate engineering of field-effect transistors based on single layers of MoS2 and graphene
    Irfan, Muhammad
    Mustafa, Hina
    Sattar, Abdul
    Ahsan, Umar
    Alvi, Farah
    Usman, Arslan
    Siddique, Irfan
    Pang, Wenhui
    Qin, Shengyong
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 184
  • [7] Effects of Proton and X-ray Irradiation on Graphene Field-Effect Transistors with Thin Gate Dielectrics
    Francis, S. Ashley
    Petrosky, James C.
    McClory, John W.
    Cress, Cory D.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (06) : 3010 - 3017
  • [8] Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors
    Yang, MH
    Teo, KBK
    Gangloff, L
    Milne, WI
    Hasko, DG
    Robert, Y
    Legagneux, P
    APPLIED PHYSICS LETTERS, 2006, 88 (11)
  • [9] Analysis of the contact resistance in staggered, top-gate organic field-effect transistors
    Richards, T.J.
    Sirringhaus, H.
    Journal of Applied Physics, 2007, 102 (09):
  • [10] Analysis of the contact resistance in staggered, top-gate organic field-effect transistors
    Richards, T. J.
    Sirringhaus, H.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (09)