On the conformability of regular line graphs

被引:1
作者
Faria, Luerbio [1 ]
Nigro, Mauro [1 ]
Sasaki, Diana [1 ]
机构
[1] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil
关键词
Vertex coloring; total coloring; conformable coloring;
D O I
10.1051/ro/2023140
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let G = (V, E) be a graph and the deficiency of G be def(G) = n-ary sumation v is an element of V(G)(Delta(G)-dG(v))def(G) = n-ary sumation v is an element of V (G)(Delta(G)-dG(v))$ {def}(G)\enspace =\enspace {\sum }_{v\in V\enspace (G)}<^>{}(\Delta (G)-{d}_G(v))$, where dG(v) is the degree of a vertex v in G. A vertex coloring phi:V(G)->{1,2,...,Delta(G)+1}phi: V (G) -> {1, 2, . . ., Delta(G) + 1}$ \phi:\enspace V\enspace (G)\enspace \to \enspace \{1,\enspace 2,\enspace.\enspace.\enspace.,\enspace \Delta (G)\enspace +\enspace 1\}$ is called conformable if the number of color classes (including empty color classes) of parity different from that of |V(G)| is at most def(G). A general characterization for conformable graphs is unknown. Conformability plays a key role in the total chromatic number theory. It is known that if G is Type 1, then G is conformable. In this paper, we prove that if G is k-regular and Class 1, then L(G) is conformable. As an application of this statement we establish that the line graph of complete graph L(Kn) is conformable, which is a positive evidence towards the Vignesh et al.'s conjecture that L(Kn) is Type 1.
引用
收藏
页码:2527 / 2536
页数:10
相关论文
共 14 条
  • [1] Baranyai Z., 1971, Proc. Coll. Keszthely, P91
  • [2] Behzad M., 1965, Graphs and their Chromatic Numbers
  • [3] Beineke Lowell W., 1970, J COMB THEORY, V9, P129, DOI 10.1016/S0021-9800(70)80019-9
  • [4] A result on the total colouring of powers of cycles
    Campos, C. N.
    de Mello, C. P.
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (05) : 585 - 597
  • [5] Chetwynd A.G., 1988, Congr. Numer., V66, P195
  • [6] Jayaraman G., 2022, Adv. Appl. Math. Sci
  • [7] Konig D., 1916, MATH ANN, V77, P453, DOI https://doi.org/10.1007/BF01456961
  • [8] Total coloring of quasi-line graphs and inflated graphs
    Mohan, S.
    Geetha, J.
    Somasundaram, K.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [9] HOW TO FIND OVERFULL SUBGRAPHS IN GRAPHS WITH LARGE MAXIMUM DEGREE
    NIESSEN, T
    [J]. DISCRETE APPLIED MATHEMATICS, 1994, 51 (1-2) : 117 - 125
  • [10] TOTAL COLORING OF CERTAIN GRAPHS
    ROSENFELD, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1971, 9 (03) : 396 - +