Temperature- and pressure-induced structural transformations in NbN: A first-principles study

被引:4
|
作者
Ivashchenko, V. I. [1 ,2 ]
Turchi, P. E. A. [3 ]
Pavlova, N. Yu [4 ]
Gorb, Leonid [5 ,6 ]
Leszczynski, Jerzy [5 ]
机构
[1] NAS Ukraine, Inst Problems Mat Sci, Krzhyzhanovsky Str 3, UA-03680 Kiev, Ukraine
[2] Slovak Univ Technol Bratislava, Fac Mat Sci & Technol Trnava, J Bottu 25, Trnava 91724, Slovakia
[3] Lawrence Livermore Natl Lab, L-352,POB 808, Livermore, CA 94551 USA
[4] Natl Pedag Dragomanov Univ, Pyrohova Str 9, UA-01601 Kiev, Ukraine
[5] Jackson State Univ, Interdisciplinary Ctr Nanotox, Dept Chem & Biochem, Jackson, MS 39217 USA
[6] Badger Tech Serv LLC, Vicksburg, MS 39180 USA
关键词
Niobium nitride; Phase transition; Intermediate phases; Mechanical properties; First-principles calculations; TRANSITION; CRYSTAL;
D O I
10.1016/j.physb.2023.414998
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Structural transformations at high temperatures and pressures, elastic moduli, hardness, fracture toughness, Debye temperature, stress-shear strain relations, electronic structure, and lattice dynamics in the experimentaly observed NaCl-NbN (d, Fm-3m), anti-TiP-NbN (e, P6(3)/mmc), anti-NiAs-NbN (d', P6(3)/mmc), WC-NbN (?, P-6m2), and TiP-NbN (e', P6(3)/mmc) phases and hypothetical new tP4-129 (P4/nmm), hP6-189 (P-62m), oP8-25 (Pmm2) and cP2-221 (Pm-3m) structures are studied by using first-principles calculations and molecular dynamics simulations. The possible mechanisms of the phase transitions between these structures based on the condensation of a certain phonon mode with subsequent spontaneous strains are suggested. The e, ? and d', and cP2-221 structures are brittle materials and exhibit highest shear moduli (200.5-216.8 GPa), Young moduli (492.4-528.8 GPa), Vickers hardness (23.9-27.1 GPa), fracture toughness (4.54-4.72 MPa m1/2), and Debye temperatures (730.5-767.0 K). It is found that the main slip systems should be (0001)<10-10> for e and ?, and both (0001)< 10-10> and (0001)<-12-10> for d'.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Systemic approach in the study of the properties and pressure-induced structural transformations in TaN: First-principles molecular dynamics simulations
    Ivashchenko, V. I.
    Shevchenko, V. I.
    Gorb, Leonid
    Leszczynski, Jerzy
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 229
  • [2] Pressure-Induced Superconductivity in SnTe: A First-Principles Study
    Zhou, Dan
    Li, Quan
    Ma, Yanming
    Cui, Qiliang
    Chen, Changfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (23) : 12266 - 12271
  • [3] Prediction of Pressure-Induced Structural Transition and Mechanical Properties of MgY from First-Principles Calculations
    Pu, Chun-Ying
    Xun, Xian-Chao
    Song, Hai-Zhen
    Zhang, Fei-Wu
    Lu, Zhi-Wen
    Zhou, Da-Wei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (01) : 92 - 98
  • [4] First-Principles Study of Pressure-Induced Structural Phase Transitions in BaZrO3
    Feng, Wenxia
    PHYSICS OF THE SOLID STATE, 2025, 67 (02) : 104 - 110
  • [5] Prediction of Pressure-Induced Structural Transition and Mechanical Properties of Mg Y from First-Principles Calculations
    濮春英
    荀显超
    宋海珍
    张飞武
    卢志文
    周大伟
    Communications in Theoretical Physics, 2016, 65 (01) : 92 - 98
  • [6] First-principles study of pressure-induced phase transition in silicon carbide
    Lu, Yu-Ping
    He, Duan-Wei
    Zhu, Jun
    Yang, Xiang-Dong
    PHYSICA B-CONDENSED MATTER, 2008, 403 (19-20) : 3543 - 3546
  • [7] Pressure-Induced Reversible hcp to fcc Phase Transition of Ti: A First-Principles Study
    Zhang, Yongmei
    Zhao, Yuhong
    Hou, Hua
    Wen, Zhiqin
    Yan, Feng
    Duan, Meiling
    SCIENCE OF ADVANCED MATERIALS, 2019, 11 (06) : 773 - 779
  • [8] Pressure-induced phase transformations of LiGaO2: First principles study
    Sailuam, Wutthigrai
    Sarasamak, Kanoknan
    Polanco, Miguel Angel Mendez
    Limpijumnong, Sukit
    CERAMICS INTERNATIONAL, 2017, 43 : S376 - S380
  • [9] First-Principles Study of Pressure-Induced Structural and Magnetic Phase Transitions of Binary Ferromagnets: MnSn and MnSb
    Song, Yan
    Dong, Shengjie
    Zhao, Hui
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2014, 27 (05) : 1257 - 1264
  • [10] First-Principles Study of Pressure-Induced Structural and Magnetic Phase Transitions of Binary Ferromagnets: MnSn and MnSb
    Yan Song
    Shengjie Dong
    Hui Zhao
    Journal of Superconductivity and Novel Magnetism, 2014, 27 : 1257 - 1264