Tucker Decomposition Based on a Tensor Train of Coupled and Constrained CP Cores

被引:5
作者
Giraud, Maxence [1 ]
Itier, Vincent [2 ,3 ]
Boyer, Remy [1 ]
Zniyed, Yassine [4 ]
de Almeida, Andre L. F. [5 ]
机构
[1] Univ Lille, UMR 9189 CRIStAL, F-59000 Lille, France
[2] IMT Nord Europe, Inst Mines Telecom, Ctr Digital Syst, F-59000 Lille, France
[3] Univ Lille, Inst Mines Telecom, CNRS, Cent Lille,UMR 9189 CRIStAL, F-59000 Lille, France
[4] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS,UMR 7020, F-83000 Toulon, France
[5] Fed Univ Fortaleza, Dept Teleinformat Engn, BR-60020181 Fortaleza, Brazil
关键词
Tensor; tucker decomposition; constrained CPD; tensor train; multilinear algebra; ALGORITHMS; FRAMEWORK; SYSTEMS;
D O I
10.1109/LSP.2023.3287144
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many real-life signal-based applications use the Tucker decomposition of a high dimensional/order tensor. A well-known problem with the Tucker model is that its number of entries increases exponentially with its order, a phenomenon known as the "curse of the dimensionality". The Higher-Order Orthogonal Iteration (HOOI) and Higher-Order Singular Value Decomposition (HOSVD) are known as the gold standard for computing the range span of the factor matrices of a Tucker Decomposition but also suffer from the curse. In this letter, we propose a new methodology with a similar estimation accuracy as the HOSVD with non-exploding computational and storage costs. If the noise-free data follows a Tucker decomposition, the corresponding Tensor Train (TT) decomposition takes a remarkable specific structure. More precisely, we prove that for a Q-order Tucker tensor, the corresponding TT decomposition is constituted by Q - 3 3-order TT-core tensors that follow a Constrained Canonical Polyadic Decomposition. Using this new formulation and the coupling property between neighboring TT-cores, we propose a JIRAFE-type scheme for the Tucker decomposition, called TRIDENT. Our numerical simulations show that the proposed method offers a drastically reduced complexity compared to the HOSVD and HOOI while outperforming the Fast Multilinear Projection (FMP) method in terms of estimation accuracy.
引用
收藏
页码:758 / 762
页数:5
相关论文
共 31 条
[1]   A PRACTICAL RANDOMIZED CP TENSOR DECOMPOSITION [J].
Battaglino, Casey ;
Ballard, Grey ;
Kolda, Tamara G. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (02) :876-901
[2]   Coupled Tensor Decomposition for Hyperspectral and Multispectral Image Fusion With Inter-Image Variability [J].
Borsoi, Ricardo A. ;
Prevost, Clemence ;
Usevich, Konstantin ;
Brie, David ;
Bermudez, Jose C. M. ;
Richard, Cedric .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) :702-717
[3]  
Cichocki A., 2014, arXiv
[4]   Tensor Networks for Dimensionality Reduction and Large-Scale Optimization Part 1 Low-Rank Tensor Decompositions [J].
Cichocki, Andrzej ;
Lee, Namgil ;
Oseledets, Ivan ;
Anh-Huy Phan ;
Zhao, Qibin ;
Mandic, Danilo P. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2016, 9 (4-5) :I-+
[5]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[6]   A constrained factor decomposition with application to MIMO antenna systems [J].
de Almeida, Andre L. F. ;
Favier, Gerard ;
Mota, Joao Cesar M. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) :2429-2442
[7]   PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization [J].
de Almeida, Andre L. F. ;
Favier, Gerard ;
M. Mota, Joao Cesar .
SIGNAL PROCESSING, 2007, 87 (02) :337-351
[8]   Channel Estimation for Intelligent Reflecting Surface Assisted MIMO Systems: A Tensor Modeling Approach [J].
de Araujo, Gilderlan T. ;
de Almeida, Andre L. F. ;
Boyer, Remy .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) :789-802
[9]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[10]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342