High-Efficiency Wide-Bandgap Perovskite Solar Cells for Laser Energy Transfer Underwater

被引:7
作者
Guo, Xin [1 ,2 ]
Chen, Xiaoming [1 ]
Li, Qingyuan [3 ]
Zhang, Guodong [2 ,4 ]
Ding, Guoyu [2 ,4 ]
Li, Fenghua [2 ]
Shi, Yifeng [2 ]
Zhang, Yang [2 ]
Wang, Haonan [2 ]
Zheng, Yifan [2 ,4 ]
Shao, Yuchuan [2 ,4 ]
机构
[1] Dalian Univ Technol, Sch Microelect, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[3] UCAS, Hangzhou Inst Adv Study, Sch Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FAPbBr(3); PCBM; perovskite solar cells; underwater; wide-bandgap; DEFECT PASSIVATION; RECOMBINATION; PERFORMANCE; STABILITY;
D O I
10.1002/ente.202300083
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wide-bandgap perovskite solar cells (PSCs) are a promising technology with a series of potential applications, including tandem photovoltaics, solar-driven electrochemical energetic devices, and outfit morphing power supply for underwater equipment. However, the energy-level difference between the charge transport layer and perovskite may result in inefficient interfacial charge extraction, leading to the series carrier accumulation at the interface that impairs the photovoltaic performance. Herein, [6,6]-phenyl C-61 butyric acid methyl ester is introduced between SnO2 and FAPbBr(3) to alleviate the energy-level mismatch. Significant photoluminescence quenches and decreased series resistance both verify the promoted interfacial charge extraction efficiency. Besides, the film on the flattened nonwetting electronic transport layers film has better quality, thus reducing defect density and nonradiative recombination. As a result, a 20% power conversion efficiency (PCE) improvement, from 7.02% to 8.55%, is achieved under AM1.5G illumination. More importantly, for the first time, this work demonstrates a highly efficient PSC with a PCE over 43% under the 532 nm laser condition, providing a promising wireless fast charging way with high-power laser irradiation in deep ocean.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Very wide-bandgap nanostructured metal oxide materials for perovskite solar cells [J].
Larina, L. L. ;
Alexeeva, O. V. ;
Almjasheva, O. V. ;
Gusarov, V. V. ;
Kozlov, S. S. ;
Nikolskaia, A. B. ;
Vildanova, M. F. ;
Shevaleevskiy, O. I. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2019, 10 (01) :70-75
[42]   Efficiency enhancement of a fluorinated wide-bandgap polymer for ternary nonfullerene organic solar cells [J].
Song, Chang Eun ;
Ham, Hyobin ;
Noh, Jiwoong ;
Lee, Sang Kyu ;
Kang, In-Nam .
POLYMER, 2020, 188
[43]   Elimination of buried interface defects for highly efficient and stable wide-bandgap perovskite solar cells [J].
Chen, Kun ;
Chen, Yu ;
Shen, Yang ;
Tang, Weijian ;
Zheng, Xiaojia ;
Zhang, Wenhua ;
Yang, Shangfeng .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2025, 38 (02) :231-239
[44]   Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application [J].
Ting Nie ;
Zhimin Fang ;
Xiaodong Ren ;
Yuwei Duan ;
Shengzhong (Frank) Liu .
Nano-Micro Letters, 2023, 15
[45]   Role of NiO in wide-bandgap perovskite solar cells based on self-assembled monolayers [J].
Zhang, Afei ;
Li, Mingyu ;
Dong, Chong ;
Ye, Wenjiang ;
Zhu, Yongxin ;
Yang, Jiakuan ;
Hu, Long ;
Li, Xiong ;
Xu, Ling ;
Zhou, Ying ;
Song, Haisheng ;
Chen, Chao ;
Tang, Jiang .
CHEMICAL ENGINEERING JOURNAL, 2024, 494
[46]   Precursor Engineering of Lead Acetate-Based Precursors for High-Open-Circuit Voltage Wide-Bandgap Perovskite Solar Cells [J].
Zhao, Jie ;
Chesman, Anthony S. R. ;
Yan, Junlin ;
Sutherland, Luke J. ;
Jasieniak, Jacek ;
Lu, Jianfeng ;
Mao, Wenxin ;
Bach, Udo .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (15) :18800-18807
[47]   Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule [J].
He, Rui ;
Chen, Tingting ;
Xuan, Zhipeng ;
Guo, Tianzhen ;
Luo, Jincheng ;
Jiang, Yiting ;
Wang, Wenwu ;
Zhang, Jingquan ;
Hao, Xia ;
Wu, Lili ;
Wang, Ye ;
Constantinou, Iordania ;
Ren, Shengqiang ;
Zhao, Dewei .
NANOPHOTONICS, 2021, 10 (08) :2059-2068
[48]   Fluorinated Pyrimidine Bridged Buried Interface for Stable and Efficient Wide-Bandgap Perovskite Solar Cells [J].
Zhu, Yong ;
Xie, Zhewen ;
Chang, Xiong ;
Wang, Guohua ;
Hong, Zhanghua ;
Zhou, Mengni ;
Li, Kunpeng ;
Li, Zhishan ;
Wang, Hua ;
Zhu, Xing ;
Zhu, Tao .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (11)
[49]   Crystallization control of air-processed wide-bandgap perovskite for carbon-based perovskite solar cells with 17.69% efficiency [J].
Li, Lingcong ;
Zhang, Ruike ;
Wu, Zhujie ;
Wang, Yao ;
Hong, Jin ;
Rao, Huashang ;
Pan, Zhenxiao ;
Zhong, Xinhua .
CHEMICAL ENGINEERING JOURNAL, 2023, 455
[50]   Advancements and Challenges in Wide-Bandgap Perovskite Solar Cells: From Single Junction to Tandem Solar Cells [J].
Liu, Lu ;
Zheng, Dexu ;
Du, Minyong ;
Liu, Jishuang ;
Liu, Jieqiong ;
Li, Zhipeng ;
Dong, Xinrui ;
Xu, Chang ;
He, Yiyang ;
Wang, Kai ;
Liu, Shengzhong .
SOLAR RRL, 2024, 8 (17)