High-Efficiency Wide-Bandgap Perovskite Solar Cells for Laser Energy Transfer Underwater

被引:7
作者
Guo, Xin [1 ,2 ]
Chen, Xiaoming [1 ]
Li, Qingyuan [3 ]
Zhang, Guodong [2 ,4 ]
Ding, Guoyu [2 ,4 ]
Li, Fenghua [2 ]
Shi, Yifeng [2 ]
Zhang, Yang [2 ]
Wang, Haonan [2 ]
Zheng, Yifan [2 ,4 ]
Shao, Yuchuan [2 ,4 ]
机构
[1] Dalian Univ Technol, Sch Microelect, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[3] UCAS, Hangzhou Inst Adv Study, Sch Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FAPbBr(3); PCBM; perovskite solar cells; underwater; wide-bandgap; DEFECT PASSIVATION; RECOMBINATION; PERFORMANCE; STABILITY;
D O I
10.1002/ente.202300083
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wide-bandgap perovskite solar cells (PSCs) are a promising technology with a series of potential applications, including tandem photovoltaics, solar-driven electrochemical energetic devices, and outfit morphing power supply for underwater equipment. However, the energy-level difference between the charge transport layer and perovskite may result in inefficient interfacial charge extraction, leading to the series carrier accumulation at the interface that impairs the photovoltaic performance. Herein, [6,6]-phenyl C-61 butyric acid methyl ester is introduced between SnO2 and FAPbBr(3) to alleviate the energy-level mismatch. Significant photoluminescence quenches and decreased series resistance both verify the promoted interfacial charge extraction efficiency. Besides, the film on the flattened nonwetting electronic transport layers film has better quality, thus reducing defect density and nonradiative recombination. As a result, a 20% power conversion efficiency (PCE) improvement, from 7.02% to 8.55%, is achieved under AM1.5G illumination. More importantly, for the first time, this work demonstrates a highly efficient PSC with a PCE over 43% under the 532 nm laser condition, providing a promising wireless fast charging way with high-power laser irradiation in deep ocean.
引用
收藏
页数:8
相关论文
共 50 条
[31]   Highly Efficient and Stable Wide-Bandgap Perovskite Solar Cells via Strain Management [J].
Hang, Pengjie ;
Kan, Chenxia ;
Li, Biao ;
Yao, Yuxin ;
Hu, Zechen ;
Zhang, Yiqiang ;
Xie, Jiangsheng ;
Wang, Ying ;
Yang, Deren ;
Yu, Xuegong .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (11)
[32]   Suppressing the Photoinduced Halide Segregation in Wide-Bandgap Perovskite Solar Cells by Strain Relaxation [J].
Liu, Hui ;
Dong, Jing ;
Wang, Pengyang ;
Shi, Biao ;
Zhao, Ying ;
Zhang, Xiaodan .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)
[33]   Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application [J].
Nie, Ting ;
Fang, Zhimin ;
Ren, Xiaodong ;
Duan, Yuwei ;
Liu, Shengzhong .
NANO-MICRO LETTERS, 2023, 15 (01)
[34]   Tailoring the Cs/Br Ratio for Efficient and Stable Wide-Bandgap Perovskite Solar Cells [J].
Cao, Jiali ;
Fang, Zhimin ;
Liu, Shengzhong .
SOLAR RRL, 2023, 7 (02)
[35]   Enhanced Efficiency and Intrinsic Stability of Wide-Bandgap Perovskite Solar Cells Through Dimethylamine-Based Cation Engineering [J].
Dong, Tianhe ;
Tan, Li ;
Li, Ze ;
Li, Jiashun ;
Li, Hongyu ;
Liao, Jing ;
Chen, Xu ;
Zhang, Wenfeng ;
Li, Haijin .
CHEMISTRY-A EUROPEAN JOURNAL, 2025, 31 (04)
[36]   Amino-acid-type alkylamine additive for high-performance wide-bandgap perovskite solar cells [J].
Nie, Ting ;
Yang, Junjie ;
Fang, Zhimin ;
Xu, Zhuo ;
Ren, Xiaodong ;
Guo, Xu ;
Chen, Tao ;
Liu, Shengzhong .
CHEMICAL ENGINEERING JOURNAL, 2023, 468
[37]   Realizing High-Efficiency Perovskite Solar Cells by Passivating Triple-Cation Perovskite Films [J].
Wu, Yinghui ;
Zhu, Hongwei ;
Wang, Dong ;
Akin, Seckin ;
Eickemeyer, Felix T. ;
Ren, Dan ;
Cai, Houzhi ;
Huang, Long-Biao .
SOLAR RRL, 2022, 6 (07)
[38]   Minimizing the Ohmic Resistance of Wide-Bandgap Perovskite for Semitransparent and Tandem Solar Cells [J].
Ye, Haoran ;
Xu, Weiquan ;
Tang, Fei ;
Yu, Bohao ;
Zhang, Cuiling ;
Ma, Nanxi ;
Lu, Feiping ;
Yang, Yuzhao ;
Shen, Kai ;
Duan, Weiyuan ;
Lambertz, Andreas ;
Ding, Kaining ;
Mai, Yaohua .
SOLAR RRL, 2023, 7 (03)
[39]   Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells [J].
Kavadiya, Shalinee ;
Onno, Arthur ;
Boyd, Caleb C. ;
Wang, Xingyi ;
Cetta, Alexa ;
McGehee, Michael D. ;
Holman, Zachary C. .
SOLAR RRL, 2021, 5 (07)
[40]   Tailoring the Grain Boundaries of Wide-Bandgap Perovskite Solar Cells by Molecular Engineering [J].
Emshadi, Khalid ;
Ghimire, Nabin ;
Gurung, Ashim ;
Bahrami, Behzad ;
Pathak, Rajesh ;
Bobba, Raja Sekhar ;
Lamsal, Buddhi Sagar ;
Rahman, Sheikh Ifatur ;
Chowdhury, Ashraful Haider ;
Chen, Ke ;
Laskar, Md Ashiqur Rahman ;
Luo, Wenqin ;
Elbohy, Hytham ;
Qiao, Quinn .
SOLAR RRL, 2020, 4 (12)