High-Efficiency Wide-Bandgap Perovskite Solar Cells for Laser Energy Transfer Underwater

被引:7
作者
Guo, Xin [1 ,2 ]
Chen, Xiaoming [1 ]
Li, Qingyuan [3 ]
Zhang, Guodong [2 ,4 ]
Ding, Guoyu [2 ,4 ]
Li, Fenghua [2 ]
Shi, Yifeng [2 ]
Zhang, Yang [2 ]
Wang, Haonan [2 ]
Zheng, Yifan [2 ,4 ]
Shao, Yuchuan [2 ,4 ]
机构
[1] Dalian Univ Technol, Sch Microelect, Dalian 116024, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Mat High Power Laser, Shanghai 201800, Peoples R China
[3] UCAS, Hangzhou Inst Adv Study, Sch Phys & Optoelect Engn, Hangzhou 310024, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
FAPbBr(3); PCBM; perovskite solar cells; underwater; wide-bandgap; DEFECT PASSIVATION; RECOMBINATION; PERFORMANCE; STABILITY;
D O I
10.1002/ente.202300083
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wide-bandgap perovskite solar cells (PSCs) are a promising technology with a series of potential applications, including tandem photovoltaics, solar-driven electrochemical energetic devices, and outfit morphing power supply for underwater equipment. However, the energy-level difference between the charge transport layer and perovskite may result in inefficient interfacial charge extraction, leading to the series carrier accumulation at the interface that impairs the photovoltaic performance. Herein, [6,6]-phenyl C-61 butyric acid methyl ester is introduced between SnO2 and FAPbBr(3) to alleviate the energy-level mismatch. Significant photoluminescence quenches and decreased series resistance both verify the promoted interfacial charge extraction efficiency. Besides, the film on the flattened nonwetting electronic transport layers film has better quality, thus reducing defect density and nonradiative recombination. As a result, a 20% power conversion efficiency (PCE) improvement, from 7.02% to 8.55%, is achieved under AM1.5G illumination. More importantly, for the first time, this work demonstrates a highly efficient PSC with a PCE over 43% under the 532 nm laser condition, providing a promising wireless fast charging way with high-power laser irradiation in deep ocean.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells [J].
Sun, Qing ;
Zong, Beibei ;
Meng, Xiangxin ;
Shen, Bo ;
Li, Xu ;
Kang, Bonan ;
Silva, S. Ravi P. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) :6702-6713
[22]   Surface Crystallization Enhancement and Defect Passivation for Efficiency and Stability Enhancement of Inverted Wide-Bandgap Perovskite Solar Cells [J].
Dong, Zhuo ;
Men, Jiao ;
Wang, Jiajun ;
Huang, Zhengguo ;
Zhai, Zeyu ;
Wang, Yuwen ;
Xie, Xiaoying ;
Zhang, Chenxi ;
Lin, Yuan ;
Wu, Jinpeng ;
Zhang, Jingbo .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) :20661-20669
[23]   Crystallization Regulation and Defect Passivation for Efficient Inverted Wide-Bandgap Perovskite Solar Cells with over 21% Efficiency [J].
Su, Gangfeng ;
Yu, Runnan ;
Dong, Yiman ;
He, Zhangwei ;
Zhang, Yuling ;
Wang, Ruyue ;
Dang, Qi ;
Sha, Shihao ;
Lv, Qianglong ;
Xu, Zhiyang ;
Liu, Zhuoxu ;
Li, Minghua ;
Tan, Zhan'ao .
ADVANCED ENERGY MATERIALS, 2024, 14 (04)
[24]   Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells [J].
Lin, Yuze ;
Chen, Bo ;
Zhao, Fuwen ;
Zheng, Xiaopeng ;
Deng, Yehao ;
Shao, Yuchuan ;
Fang, Yanjun ;
Bai, Yang ;
Wang, Chunru ;
Huang, Jinsong .
ADVANCED MATERIALS, 2017, 29 (26)
[25]   Interface modification by sulfonamide for high-efficiency and stable perovskite solar cells [J].
Xu, Yanchao ;
Liu, Xingchong ;
Peng, Yongshan ;
He, Tanggui ;
Tang, Anmin ;
Li, Haimin ;
Wang, Hanyu .
ORGANIC ELECTRONICS, 2025, 144
[26]   Piperazine-Assisted Construction of 2D/3D Wide-Bandgap Perovskite for Realizing High-Efficiency Perovskite/Organic Tandem Solar Cells [J].
Wang, Ziyue ;
Kang, Shuaiqing ;
Zhou, Xia ;
Chen, Haiyang ;
Jiang, Xingxing ;
Zhang, Zhichao ;
Zheng, Jialei ;
Zhang, Ruopeng ;
Chen, Weijie ;
Zhang, Jiandong ;
Li, Yaowen .
CHINESE JOURNAL OF CHEMISTRY, 2024, 42 (16) :1819-1827
[27]   In situ artificial wide-bandgap Cs-based recrystallized-arrays for optical optimization of perovskite solar cells [J].
Gao, Chao ;
Zhang, Haotian ;
Qiao, Feiyang ;
Huang, Huanpei ;
Zhang, Dezhao ;
Ding, Dong ;
Du, Daxue ;
Liang, Jingjing ;
Bao, Jiahao ;
Liu, Hong ;
Shen, Wenzhong .
NANO ENERGY, 2023, 116
[28]   Advances in Single-Halogen Wide-Bandgap Perovskite Solar Cells [J].
Nie, Ting ;
Jia, Lingbo ;
Feng, Jiangshan ;
Yang, Shangfeng ;
Ding, Jianning ;
Liu, Shengzhong ;
Fang, Zhimin .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (09)
[29]   Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells [J].
Ma, Xiaohui ;
Yang, Liqun ;
Shang, Xueni ;
Li, Mengjia ;
Gao, Deyu ;
Wu, Cuncun ;
Zheng, Shijian ;
Zhang, Boxue ;
Chen, Jiangzhao ;
Chen, Cong ;
Song, Hongwei .
CHEMICAL ENGINEERING JOURNAL, 2021, 426
[30]   ADDITIVE IMPROVES PERFORMANCE OF WIDE BANDGAP PEROVSKITE SOLAR CELLS [J].
Li Z. ;
Feng X. ;
Chen X. ;
Liu X. ;
Dai S. ;
Cai M. .
Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04) :30-35