A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism

被引:8
作者
Gong, Renxi [1 ,2 ]
Li, Xianglong [1 ]
机构
[1] Guangxi Univ, Sch Elect Engn, Nanning 530004, Peoples R China
[2] Nanning Univ, Sch Traff &Transportat, Nanning 530200, Peoples R China
基金
中国国家自然科学基金;
关键词
short-term load prediction; dual-stage attention mechanism; crisscross grey wolf optimizer; NEURAL-NETWORK; ALGORITHM; INTELLIGENCE;
D O I
10.3390/en16062878
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate short-term load forecasting is of great significance to the safe and stable operation of power systems and the development of the power market. Most existing studies apply deep learning models to make predictions considering only one feature or temporal relationship in load time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the input side of the model to improve the sensitivity of the model to key features and information at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical crossover operators, to enhance the global search ability and the diversity of the population of GWO. Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a collected load dataset, four evaluation metrics and parametric and non-parametric testing manners are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37% and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that the proposed model can better fit the load data and achieve better prediction results.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Short-term load forecasting with bidirectional LSTM-attention based on the sparrow search optimisation algorithm
    Wen, Jiahao
    Wang, Zhijian
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2023, 26 (01) : 20 - 27
  • [22] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374
  • [23] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    Reis, AJR
    da Silva, APA
    APPLIED SOFT COMPUTING, 2004, 4 (04) : 405 - 412
  • [24] Short-term power grid load forecasting based on VMD-SE-Bilstm-Attention hybrid model
    Zhong, Bin
    Yang, Liu
    Li, Bingruo
    Ji, Ming
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 1951 - 1958
  • [25] A wavelet-nearest neighbor model for short-term load forecasting
    Sudheer, Gopinathan
    Suseelatha, Annamareddy
    ENERGY SCIENCE & ENGINEERING, 2015, 3 (01): : 51 - 59
  • [26] Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model
    Mao, Huina
    Zeng, Xiao-Jun
    Leng, Gang
    Zhai, Yong-Jie
    Keane, John A.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (02) : 1080 - 1090
  • [27] ANN based Short-Term Load Curve Forecasting
    Chis, V
    Barbulescu, C.
    Kilyeni, S.
    Dzitac, S.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2018, 13 (06) : 938 - 955
  • [28] Short-term Load Forecasting based on Wavelet Approach
    Ghanavati, Ali Karami
    Afsharinejad, Amir
    Vafamand, Navid
    Arefi, Mohammad Mehdi
    Javadi, Mohammad Sadegh
    Catalao, Joao P. S.
    2020 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2020,
  • [29] An Ensemble Model based on Deep Learning and Data Preprocessing for Short-Term Electrical Load Forecasting
    Shen, Yamin
    Ma, Yuxuan
    Deng, Simin
    Huang, Chiou-Jye
    Kuo, Ping-Huan
    SUSTAINABILITY, 2021, 13 (04) : 1 - 21
  • [30] Short-Term Power Load Forecasting Based on an EPT-VMD-TCN-TPA Model
    Zan, Shifa
    Zhang, Qiang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):