Relationship Between Daytime Versus Nighttime Continuous Glucose Monitoring Metrics with A1C in Adults with Type 1 Diabetes

被引:5
作者
Shah, Viral N. [1 ,4 ]
Akturk, Halis K. [1 ]
Vigers, Tim [1 ]
Pyle, Laura [1 ]
Oliver, Nick [2 ]
Klonoff, David C. [3 ]
机构
[1] Univ Colorado, Barbara Davis Ctr Diabet, Anschutz Med Campus, Aurora, CO USA
[2] Imperial Coll London, London, England
[3] Mills Peninsula Med Ctr, Diabet Res Inst, San Mateo, CA USA
[4] Univ Colorado, Barbara Davis Ctr Diabet, Anschutz Med Campus, Aurora, CO 80045 USA
关键词
Type; 1; diabetes; Continuous glucose monitoring; HbA1c; Glycemic control; CGM metrics; PLASMA-GLUCOSE; POSTPRANDIAL GLUCOSE;
D O I
10.1089/dia.2022.0365
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To evaluate influence of daytime versus nighttime continuous glucose monitoring (CGM)-based metrics on A1C in adults with type 1 diabetes (T1D).Research Design and Methods: CGM data from 407 adults with T1D (age 39 +/- 15 years, diabetes duration 20 +/- 12 years, A1C 7.3% +/- 1.4% and 53% female) from two studies were included in this analysis. The association between daytime (6 AM-10.59 PM) and nighttime (11 PM-5.59 AM) CGM variables such as mean glucose, time in range (TIR; 70-180 mg/dL), time in tight target range (TTIR; 70-140 mg/dL), and time above range (TAR >180 mg/dL) was examined within five A1C categories (<7%, 7%-7.9%, 8%-8.9%, 9%-9.9%, and >= 10%).Results: Although mean glucose was increasing with higher A1C, there was no statistical difference in mean glucose between daytime versus nighttime within five A1C groups (143.2 +/- 22.7 vs. 143.6 +/- 25.0 for A1C <7%, 171.4 +/- 17.3 vs. 175.3 +/- 28.8 for A1C 7.0%-7.9%, 193.4 +/- 19.4 vs. 195.3 +/- 29.5 for A1C 8.0%-8.9%, 214.9 +/- 28.8 vs. 219.7 +/- 36.1 for A1C 9.0%-9.9% and 244.0 +/- 39.0 vs. 239.9 +/- 50.9 for A1C >= 10%, P > 0.05). Similarly, there was no difference between various CGM metrics by daytime versus nighttime within five A1C groups. Differences between five A1C groups' daytime versus nighttime mean glucose, TIR, TTIR, and TAR were also not statistically significant (all P > 0.05)Conclusion: Daytime versus nighttime glycemic control has similar influence on A1C in adults with T1D.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 23 条
  • [1] Impact of Different Types of Data Loss on Optimal Continuous Glucose Monitoring Sampling Duration
    Akturk, Halis Kaan
    Herrero, Pau
    Oliver, Nick
    Wise, Haley
    Eikermann, Emma
    Snell-Bergeon, Janet
    Shah, Viral N.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2022, 24 (10) : 749 - 753
  • [2] Possible Ways to Improve Postprandial Glucose Control in Type 1 Diabetes
    Akturk, Halis Kaan
    Rewers, Amanda
    Joseph, Hal
    Schneider, Nicole
    Garg, Satish K.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2018, 20 : 24 - 32
  • [3] 7. Diabetes Technology: Standards of Medical Care in Diabetes-2022
    不详
    [J]. DIABETES CARE, 2022, 45 : S97 - S112
  • [4] [Anonymous], 2001, DIABETES CARE, V24, P775
  • [5] Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c
    Bastyr, EJ
    Stuart, CA
    Brodows, RG
    Schwartz, S
    Graf, CJ
    Zagar, A
    Robertson, KE
    [J]. DIABETES CARE, 2000, 23 (09) : 1236 - 1241
  • [6] Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range
    Battelino, Tadej
    Danne, Thomas
    Bergenstal, Richard M.
    Amiel, Stephanie A.
    Beck, Roy
    Biester, Torben
    Bosi, Emanuele
    Buckingham, Bruce A.
    Cefalu, William T.
    Close, Kelly L.
    Cobelli, Claudio
    Dassau, Eyal
    DeVries, J. Hans
    Donaghue, Kim C.
    Dovc, Klemen
    Doyle, Francis J.
    Garg, Satish
    Grunberger, George
    Heller, Simon
    Heinemann, Lutz
    Hirsch, Irl B.
    Hovorka, Roman
    Jia, Weiping
    Kordonouri, Olga
    Kovatchev, Boris
    Kowalski, Aaron
    Laffel, Lori
    Levine, Brian
    Mayorov, Alexander
    Mathieu, Chantal
    Murphy, Helen R.
    Nimri, Revital
    Norgaard, Kirsten
    Parkin, Christopher G.
    Renard, Eric
    Rodbard, David
    Saboo, Banshi
    Schatz, Desmond
    Stoner, Keaton
    Urakami, Tatsuiko
    Weinzimer, Stuart A.
    Phillip, Moshe
    [J]. DIABETES CARE, 2019, 42 (08) : 1593 - 1603
  • [7] Beck Roy W, 2019, J Diabetes Sci Technol, V13, P614, DOI 10.1177/1932296818822496
  • [8] Time-in-range for monitoring glucose control: Is it time for a change?
    Bellido, Virginia
    Pines-Corrales, Pedro Jose
    Villar-Taibo, Rocio
    Ampudia-Blasco, Francisco Javier
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2021, 177
  • [9] Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring
    Bergenstal, Richard M.
    Beck, Roy W.
    Close, Kelly L.
    Grunberger, George
    Sacks, David B.
    Kowalski, Aaron
    Brown, Adam S.
    Heinemann, Lutz
    Aleppo, Grazia
    Ryan, Donna B.
    Riddlesworth, Tonya D.
    Cefalu, William T.
    [J]. DIABETES CARE, 2018, 41 (11) : 2275 - 2280
  • [10] Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP)
    Bergenstal, Richard M.
    Ahmann, Andrew J.
    Bailey, Timothy
    Beck, Roy W.
    Bissen, Joan
    Buckingham, Bruce
    Deeb, Larry
    Dolin, Robert H.
    Garg, Satish K.
    Goland, Robin
    Hirsch, Irl B.
    Klonoff, David C.
    Kruger, Davida F.
    Matfin, Glenn
    Mazze, Roger S.
    Olson, Beth A.
    Parkin, Christopher
    Peters, Anne
    Powers, Margaret A.
    Rodriguez, Henry
    Southerland, Phil
    Strock, Ellie S.
    Tamborlane, William
    Wesley, David M.
    [J]. DIABETES TECHNOLOGY & THERAPEUTICS, 2013, 15 (03) : 198 - 211