Multiple sign-changing solutions for superlinear (p, q)-equations in symmetrical expanding domains

被引:3
作者
Liu, Wulong [1 ]
Dai, Guowei [2 ]
Winkert, Patrick [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2024年 / 191卷
关键词
Lusternik-Schnirelmann category; (p; q)-equation; Sign-changing solution; Superlinear problem; Symmetrical expanding domain; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; MULTIBUMP SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; NUMBER; TOPOLOGY;
D O I
10.1016/j.bulsci.2024.103393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study quasilinear elliptic equations defined on symmetrical expanding domains driven by the (p, q)Laplacian and with a superlinear right-hand side. Based on the Lusternik-Schnirelmann category we prove the existence of at least gamma(omega lambda \ {0}) pairs (+/- u) of odd weak solutions with precisely two nodal domains, where gamma stands for the genus. (c) 2024 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:21
相关论文
共 26 条
  • [1] Alternating Sign Multibump Solutions of Nonlinear Elliptic Equations in Expanding Tubular Domains
    Ackermann, Nils
    Clapp, Monica
    Pacella, Filomena
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (05) : 751 - 779
  • [2] Multiple Solutions for a Nonlinear Schrodinger Equation with Magnetic Fields
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Furtado, Marcelo F.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) : 1565 - 1586
  • [3] On the number of solutions of NLS equations with magnetics fields in expanding domains
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Furtado, Marcelo F.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (09) : 2534 - 2548
  • [4] Alves CO, 2005, ADV NONLINEAR STUD, V5, P73
  • [5] Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity
    Alves, CO
    Ding, YH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) : 508 - 521
  • [6] Ambrosetti A, 2007, CAM ST AD M, V104, P1, DOI 10.1017/CBO9780511618260
  • [7] Multiple positive solutions for a nonlinear Schrodinger equation
    Bartsch, T
    Wang, ZQ
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03): : 366 - 384
  • [8] EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N)
    BARTSCH, T
    WANG, ZQ
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) : 1725 - 1741
  • [9] Asymptotically radial solutions in expanding annular domains
    Bartsch, Thomas
    Clapp, Monica
    Grossi, Massimo
    Pacella, Filomena
    [J]. MATHEMATISCHE ANNALEN, 2012, 352 (02) : 485 - 515
  • [10] THE EFFECT OF THE DOMAIN TOPOLOGY ON THE NUMBER OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC PROBLEMS
    BENCI, V
    CERAMI, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (01) : 79 - 93