We generalize the scalar discrete hypergeometric series to allow for matrix parameters. We show their connection to classical matrix hypergeometric series, derive conditions for convergence on the boundary disk, show criteria for divergence, derive integral representations, and establish some difference equations they solve. We also highlight the special case of discrete matrix Bessel functions, whose scalar analogue has proved useful in applications. (c) 2022 Elsevier Inc. All rights reserved.
机构:
Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, AustraliaUniv Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, Australia
Forrester, P. J.
Zhang, Jiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, AustraliaUniv Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, Australia
机构:
Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, AustraliaUniv Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, Australia
Forrester, P. J.
Zhang, Jiyuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, AustraliaUniv Melbourne, ARC Ctr Excellence Math & Stat Frontiers, Sch Math & Stat, Melbourne, Vic 3010, Australia