A PROOF OF N. TAKAHASHI'S CONJECTURE FOR (P2, E) AND A REFINED SHEAVES/GROMOV-WITTEN CORRESPONDENCE

被引:4
作者
Bousseau, Pierrick [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
关键词
GOPAKUMAR-VAFA INVARIANTS; STABLE LOGARITHMIC MAPS; DEGENERATION FORMULA; MIRROR SYMMETRY; TROPICAL DISCS; MODULI SPACES; K3; SURFACES; GEOMETRY; INTEGRALITY;
D O I
10.1215/00127094-2022-0095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove N. Takahashi's conjecture determining the contribution of each contact point in genus-0 maximal contact Gromov-Witten theory of P2 relative to a smooth cubic E. This is a new example of a question in Gromov-Witten theory that can be fully solved despite the presence of contracted components and multiple covers. The proof relies on a tropical computation of the Gromov-Witten invariants and on the interpretation of the tropical picture as describing wall-crossing in the derived category of coherent sheaves on P2.The same techniques allow us to prove a new sheaves/Gromov-Witten correspondence, relating Betti numbers of moduli spaces of one-dimensional Gieseker semistable sheaves on P2, or equivalently, refined genus-0 Gopakumar-Vafa invariants of local P2, with higher-genus maximal contact Gromov-Witten theory of (P2, E). The correspondence involves the nontrivial change of variables y D ein, where y is the refined/cohomological variable on the sheaf side, and h is the genus variable on the Gromov-Witten side. We explain how this correspondence can be heuristically motivated by a combination of mirror symmetry and hyper-Kahler rotation.
引用
收藏
页码:2895 / 2955
页数:61
相关论文
共 78 条
  • [1] Abramovich D, 2024, Arxiv, DOI arXiv:2009.07720
  • [2] Decomposition of degenerate Gromov-Witten invariants
    Abramovich, Dan
    Chen, Qile
    Gross, Mark
    Siebert, Bernd
    [J]. COMPOSITIO MATHEMATICA, 2020, 156 (10) : 2020 - 2075
  • [3] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [4] Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves
    Auroux, Denis
    Katzarkov, Ludmil
    Orlov, Dmitri
    [J]. INVENTIONES MATHEMATICAE, 2006, 166 (03) : 537 - 582
  • [5] THE SPACE OF STABILITY CONDITIONS ON THE LOCAL PROJECTIVE PLANE
    Bayer, Arend
    Macri, Emanuele
    [J]. DUKE MATHEMATICAL JOURNAL, 2011, 160 (02) : 263 - 322
  • [6] BEILINSON AA, 1982, ASTERISQUE, P7
  • [7] Refined curve counting with tropical geometry
    Block, Florian
    Goettsche, Lothar
    [J]. COMPOSITIO MATHEMATICA, 2016, 152 (01) : 115 - 151
  • [8] SCATTERING DIAGRAMS, STABILITY CONDITIONS, AND COHERENT SHEAVES ON P2
    Bousseau, Pierrick
    [J]. JOURNAL OF ALGEBRAIC GEOMETRY, 2022, : 593 - 686
  • [9] Holomorphic anomaly equation for (P2, E) and the Nekrasov-Shatashvili limit of local P2
    Bousseau, Pierrick
    Fan, Honglu
    Guo, Shuai
    Wu, Longting
    [J]. FORUM OF MATHEMATICS PI, 2021, 9
  • [10] The quantum tropical vertex
    Bousseau, Pierrick
    [J]. GEOMETRY & TOPOLOGY, 2020, 24 (03) : 1297 - 1379