Validity of the Landsat surface reflectance archive for aquatic science: Implications for cloud-based analysis

被引:22
作者
Maciel, Daniel Andrade [1 ]
Pahlevan, Nima [2 ,3 ]
Barbosa, Claudio Clemente Faria [1 ]
de Novo, Evlyn Marcia Leao de Moraes [1 ]
Paulino, Rejane Souza [1 ]
Martins, Vitor Souza [4 ]
Vermote, Eric [2 ]
Crawford, Christopher J. [5 ]
机构
[1] Natl Inst Space Res INPE, Instrumentat Lab Aquat Syst, Sao Jose Dos Campos, Brazil
[2] NASA Goddard Space Flight Ctr GSFC, Greenbelt, MD USA
[3] Sci Syst & Applicat Inc SSAI, Lanham, MD USA
[4] Mississippi State Univ, Dept Agr & Biol Engn, Starkville, MS USA
[5] US Geol Survey Earth Resources Observat & Sci Ctr, Sioux Falls, SD USA
基金
巴西圣保罗研究基金会;
关键词
ATMOSPHERIC CORRECTION; PERFORMANCE; SENTINEL-2; COASTAL; INLAND; PRODUCTS;
D O I
10.1002/lol2.10344
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Originally developed for terrestrial science and applications, the US Geological Survey Landsat surface reflectance (SR) archive spanning similar to 40 yr of observations has been increasingly utilized in large-scale water-quality studies. These products, however, have not been rigorously validated using in situ measured reflectance. This letter quantifies and demonstrates the quality of the SR products by harnessing a sizeable global dataset (N = 1100). We found that the Landsat 8/9 SR in the green and red bands marginally meet the targeted accuracy requirements (30%), whereas the uncertainties in the blue and coastal-aerosol bands ranged from 48% to 110%. We further observed > +25% biases in the visible bands of Landsat 5/7 SR, which can introduce an apparent downward trend when applied in time-series analyses combined with Landsat 8/9. Users must exercise caution when using this archive for trend analyses, and progress in atmospheric correction is required to foster advanced applications of the Landsat archive for aquatic science.
引用
收藏
页码:850 / 858
页数:9
相关论文
共 43 条
[1]   Applications of Spectral Band Adjustment Factors (SBAF) for Cross-Calibration [J].
Chander, Gyanesh ;
Mishra, Nischal ;
Helder, Dennis L. ;
Aaron, David B. ;
Angal, Amit ;
Choi, Taeyoung ;
Xiong, Xiaoxiong ;
Doelling, David R. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (03) :1267-1281
[2]  
Clark R., 1993, 4 ANN JPL AIRB GEOSC
[3]   Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products [J].
Claverie, Martin ;
Vermote, Eric F. ;
Franch, Belen ;
Masek, Jeffrey G. .
REMOTE SENSING OF ENVIRONMENT, 2015, 169 :390-403
[4]   Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters [J].
De Keukelaere, L. ;
Sterckx, S. ;
Adriaensen, S. ;
Knaeps, E. ;
Reusen, I ;
Giardino, C. ;
Bresciani, M. ;
Hunter, P. ;
Neil, C. ;
Van der Zande, D. ;
Vaiciute, D. .
EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) :525-542
[5]   Analysis Ready Data: Enabling Analysis of the Landsat Archive [J].
Dwyer, John L. ;
Roy, David P. ;
Sauer, Brian ;
Jenkerson, Calli B. ;
Zhang, Hankui K. ;
Lymburner, Leo .
REMOTE SENSING, 2018, 10 (09)
[6]  
Farland M., 2022, MICR PLAN COMP OCT 2
[7]   Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS [J].
Franz, Bryan A. ;
Bailey, Sean W. ;
Kuring, Norman ;
Werdell, P. Jeremy .
JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
[8]  
GCOS, 2016, ECV PROD REQ LAK
[9]   Google Earth Engine: Planetary-scale geospatial analysis for everyone [J].
Gorelick, Noel ;
Hancher, Matt ;
Dixon, Mike ;
Ilyushchenko, Simon ;
Thau, David ;
Moore, Rebecca .
REMOTE SENSING OF ENVIRONMENT, 2017, 202 :18-27
[10]   Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images [J].
He, Yuan ;
Lu, Zheng ;
Wang, Weijia ;
Zhang, Dong ;
Zhang, Yunlin ;
Qin, Boqiang ;
Shi, Kun ;
Yang, Xiaofan .
WATER RESEARCH, 2022, 215