Standing Waves Solutions for the Discrete Schrodinger Equations with Resonance

被引:1
作者
Wang, Zhenguo [1 ]
Li, Qiuying [2 ]
机构
[1] Taiyuan Univ, Dept Math, Taiyuan 030032, Shanxi, Peoples R China
[2] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Henan, Peoples R China
关键词
Discrete nonlinear Schrodinger equations; Standing wave; Critical sequence; Resonance; Linking methods; BOUNDARY-VALUE PROBLEM; DIFFERENCE-EQUATIONS; HOMOCLINIC SOLUTIONS; GAP SOLITONS; POSITIVE SOLUTIONS; EXISTENCE; PROPAGATION;
D O I
10.1007/s40840-023-01530-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using linking methods, we obtain the existence of the nontrivial standing wave solutions for the discrete nonlinear Schr & ouml;dinger equations with resonance and unbounded potentials. In order to prove the existence of standing wave solutions, we give resonant condition to find a bounded critical sequence, and we show that such a sequence guarantees the existence of one nontrivial standing wave solution in l(2) when the nonlinearity is resonant and the potential is unbounded. To the best of the our knowledge, there is no existence results for the discrete nonlinear Schr & ouml;dinger equations with resonance in the literature.
引用
收藏
页数:17
相关论文
共 36 条
[1]   Multiple homoclinic solutions for discrete Schrodinger equations with perturbed and sublinear terms [J].
Chen, Guanwei ;
Schechter, Martin .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02)
[2]   Homoclinic solutions for perturbed discrete Schrodinger systems in infinite lattices: Sublinear and asymptotically linear cases [J].
Chen, Guanwei .
APPLIED MATHEMATICS LETTERS, 2021, 117
[3]   Infinitely many homoclinic solutions for sublinear and nonperiodic Schrodinger lattice systems [J].
Chen, Guanwei ;
Sun, Jijiang .
BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
[4]   Discretizing light behaviour in linear and nonlinear waveguide lattices [J].
Christodoulides, DN ;
Lederer, F ;
Silberberg, Y .
NATURE, 2003, 424 (6950) :817-823
[5]   Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity [J].
Cuevas, J. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (01) :67-76
[6]   Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian [J].
D'Agui, Giuseppina ;
Mawhin, Jean ;
Sciammetta, Angela .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) :383-397
[7]   Notes on gap solitons for periodic discrete nonlinear Schrodinger equations [J].
Ding, Liang ;
Wei, Jinlong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6673-6682
[8]   SOLITON PROPAGATION IN MATERIALS WITH SATURABLE NONLINEARITY [J].
GATZ, S ;
HERRMANN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (11) :2296-2302
[9]   SOLITON PROPAGATION AND SOLITON COLLISION IN DOUBLE-DOPED FIBERS WITH A NON-KERR-LIKE NONLINEAR REFRACTIVE-INDEX CHANGE [J].
GATZ, S ;
HERRMANN, J .
OPTICS LETTERS, 1992, 17 (07) :484-486
[10]   Chaos and localization in the discrete nonlinear Schrodinger equation [J].
Iubini, Stefano ;
Politi, Antonio .
CHAOS SOLITONS & FRACTALS, 2021, 147 (147)