ROBUST BDDC ALGORITHMS FOR FINITE VOLUME ELEMENT METHODS

被引:1
作者
Su, Yanru [1 ]
Tu, Xuemin [1 ]
Xu, Yingxiang [2 ]
机构
[1] Univ Kansas, Dept Math, 1460 Jayhawk Blvd, Lawrence, KS 66045 USA
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2023年 / 58卷
关键词
finite volume element methods; domain decomposition; BDDC; deluxe scaling; BALANCING DOMAIN DECOMPOSITION; ADAPTIVE COARSE SPACES; 3-DIMENSIONAL ELLIPTIC PROBLEMS; PRIMAL FETI METHODS; IRREGULAR SUBDOMAINS; OVERLAPPING SCHWARZ; CONSTRAINTS; PRECONDITIONER; FLOW; DP;
D O I
10.1553/etna_vol58s66
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The balancing domain decomposition by constraints (BDDC) method is applied to the linear system share nice features of both finite element and finite volume methods and are flexible for complicated geometries with good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is provided, and several numerical experiments confirm the theoretical estimate.
引用
收藏
页码:66 / 83
页数:18
相关论文
共 56 条
[1]   A domain decomposition preconditioner for an advection-diffusion problem [J].
Achdou, Y ;
Le Tallec, P ;
Nataf, F ;
Vidrascu, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :145-170
[2]  
Achdou Y., 1999, Domain Decomposition Methods in Sciences and Engineering: Eleventh International Conference London, UK, P3
[3]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[4]   MULTIPLICATIVE SCHWARZ ALGORITHMS FOR SOME NONSYMMETRIC AND INDEFINITE PROBLEMS [J].
CAI, XC ;
WIDLUND, OB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :936-952
[5]   DOMAIN DECOMPOSITION ALGORITHMS FOR INDEFINITE ELLIPTIC PROBLEMS [J].
CAI, XC ;
WIDLUND, OB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (01) :243-258
[6]   ADDITIVE SCHWARZ ALGORITHMS FOR PARABOLIC CONVECTION-DIFFUSION EQUATIONS [J].
CAI, XC .
NUMERISCHE MATHEMATIK, 1991, 60 (01) :41-61
[7]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[8]   THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS [J].
CAI, ZQ ;
MANDEL, J ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :392-402
[9]   IS 2K-CONJECTURE VALID FOR FINITE VOLUME METHODS? [J].
Cao, Waixiang ;
Zhang, Zhimin ;
Zou, Qingsong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :942-962
[10]  
Chen ZY, 2015, MATH COMPUT, V84, P599