Predictive simulations of NBI ion power load to the ICRH antenna in Wendelstein 7-X

被引:1
作者
Kontula, J. [1 ]
Akaslompolo, S. [1 ]
Ikaheimo, A. [1 ]
Lazerson, S. [2 ]
Kurki-Suonio, T. [1 ]
Hartmann, D. [2 ]
Rust, N. [2 ]
McNeely, P. [2 ]
Kazakov, Ye O. [3 ]
Ongena, J.
机构
[1] Aalto Univ, Dept Appl Phys, Espoo, Finland
[2] Max Planck Inst Plasma Phys, Greifswald, Germany
[3] Ecole Royale Mil, Koninklijke Mil Sch, Lab Plasma Phys, Brussels, Belgium
基金
芬兰科学院;
关键词
NBI; ICRH; fast ions; Wendelstein; 7-X; stellarator; ASCOT; W7-X;
D O I
10.1088/1361-6587/acd07e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In Wendelstein 7-X (W7-X), a new ion cyclotron resonance heating (ICRH) antenna will be commissioned during the operational campaign OP2.1. The antenna will have to sustain power loads not only from thermal plasma and radiation but also fast ions. Predictive simulations of fast-ion power loads to the antenna components are therefore important to establish safe operational limits. In this work, the fast-ion power loads from the W7-X neutral beam injection (NBI) system to the ICRH antenna was simulated using the ASCOT suite of codes. Five reference magnetic configurations and five antenna positions were considered to provide an overview of power load behavior under various operating conditions. The NBI power load was found to have an exponential dependence on the antenna insertion depth. Differences between magnetic configurations were significant, with the antenna limiter power load varying between 380 W and 100 kW depending on the configuration. Qualitative differences in power load patterns between configurations were also observed, with the low mirror and low iota configurations exhibiting higher loads to the sensitive antenna straps. The local fast-ion power flux to the antenna limiter was also considered and found to exceed the 2.0 MW m(-2) steady-state safety limit only in specific cases. The NBI system might thus pose a safety concern to the ICRH antenna during concurrent NBI-ICRH operation, but additional heat propagation simulations of antenna components are needed to establish more realistic operational time limits.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Modelling of NBI ion wall loads in the W7-X stellarator [J].
Aekaeslompolo, S. ;
Drevlak, M. ;
Turkin, Y. ;
Bozhenkov, S. ;
Jesche, T. ;
Kontula, J. ;
Kurki-Suonio, T. ;
Wolf, R. C. .
NUCLEAR FUSION, 2018, 58 (08)
[2]   Armoring of the Wendelstein 7-X divertor-observation immersion-tubes based on NBI fast-ion simulations [J].
Akaslompolo, Simppa ;
Drewelow, Peter ;
Gao, Yu ;
Ali, Adnan ;
Bozhenkov, Sergey ;
Fellinger, Joris ;
Geiger, Joachim ;
Hartmann, Dirk ;
Hathiraman, Dag ;
Jakubowski, Marcin ;
McNeely, Paul ;
Mohr, Stefan ;
Niemann, Holger ;
Pisano, Fabio ;
Rust, Norbert ;
Sitjes, Aleix Puig ;
Sleczka, Marcin ;
Wolf, Robert .
FUSION ENGINEERING AND DESIGN, 2019, 146 :862-865
[3]   Modelling neutral beams in fusion devices: Beam let-based model for fast particle simulations [J].
Asunta, O. ;
Govenius, J. ;
Budny, R. ;
Gorelenkova, M. ;
Tardini, G. ;
Kurki-Suonio, T. ;
Salmi, A. ;
Sipilae, S. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 188 :33-46
[4]   Design improvements, assembly and testing of the ICRH antenna for W7-X [J].
Bardawil, D. A. Castano ;
Schweer, B. ;
Ongena, J. ;
Behr, W. ;
Crombe, K. ;
Czymek, G. ;
Han, X. ;
Hartmann, D. ;
Hollfeld, K. P. ;
Kallmeyer, J. P. ;
Kramer-Flecken, A. ;
Linsmeier, Ch ;
Neubauer, O. ;
Nicolai, D. ;
Offermanns, G. ;
Satheeswaran, G. ;
Stepanov, I ;
Van Schoor, M. ;
Vervier, M. ;
Wolf, R. .
FUSION ENGINEERING AND DESIGN, 2021, 166
[5]   Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas [J].
Beurskens, M. N. A. ;
Bozhenkov, S. A. ;
Ford, O. ;
Xanthopoulos, P. ;
Zocco, A. ;
Turkin, Y. ;
Alonso, A. ;
Beidler, C. ;
Calvo, I ;
Carralero, D. ;
Estrada, T. ;
Fuchert, G. ;
Grulke, O. ;
Hirsch, M. ;
Ida, K. ;
Jakubowski, M. ;
Killer, C. ;
Krychowiak, M. ;
Kwak, S. ;
Lazerson, S. ;
Langenberg, A. ;
Lunsford, R. ;
Pablant, N. ;
Pasch, E. ;
Pavone, A. ;
Reimold, F. ;
Romba, Th ;
von Stechow, A. ;
Smith, H. M. ;
Windisch, T. ;
Yoshinuma, M. ;
Zhang, D. ;
Wolf, R. C. .
NUCLEAR FUSION, 2021, 61 (11)
[6]   Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X [J].
Bosch, H. -S. ;
Wolf, R. C. ;
Andreeva, T. ;
Baldzuhn, J. ;
Birus, D. ;
Bluhm, T. ;
Braeuer, T. ;
Braune, H. ;
Bykov, V. ;
Cardella, A. ;
Durodie, F. ;
Endler, M. ;
Erckmann, V. ;
Gantenbein, G. ;
Hartmann, D. ;
Hathiramani, D. ;
Heimann, P. ;
Heinemann, B. ;
Hennig, C. ;
Hirsch, M. ;
Holtum, D. ;
Jagielski, J. ;
Jelonnek, J. ;
Kasparek, W. ;
Klinger, T. ;
Koenig, R. ;
Kornejew, P. ;
Kroiss, H. ;
Krom, J. G. ;
Kuehner, G. ;
Laqua, H. ;
Laqua, H. P. ;
Lechte, C. ;
Lewerentz, M. ;
Maier, J. ;
McNeely, P. ;
Messiaen, A. ;
Michel, G. ;
Ongena, J. ;
Peacock, A. ;
Pedersen, T. S. ;
Riedl, R. ;
Riemann, H. ;
Rong, P. ;
Rust, N. ;
Schacht, J. ;
Schauer, F. ;
Schroeder, R. ;
Schweer, B. ;
Spring, A. .
NUCLEAR FUSION, 2013, 53 (12)
[7]   Analytical Beamlet Code 3D for neutral beam injectors: principles and applications [J].
den Harder, N. ;
Rittich, D. ;
Orozco, G. ;
Hopf, C. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
[8]   Fast particle confinement with optimized coil currents in the W7-X stellarator [J].
Drevlak, M. ;
Geiger, J. ;
Helander, P. ;
Turkin, Y. .
NUCLEAR FUSION, 2014, 54 (07)
[9]   Fast particle loss channels in Wendelstein 7-X [J].
Faustin, J. M. ;
Cooper, W. A. ;
Graves, J. P. ;
Pfefferle, D. ;
Geiger, J. .
NUCLEAR FUSION, 2016, 56 (09)
[10]   ICRH induced particle losses in Wendelstein 7-X [J].
Faustin, J. M. ;
Cooper, W. A. ;
Graves, J. P. ;
Pfefferle, D. ;
Geiger, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (07)