Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1

被引:1
|
作者
Zhu, Yalan [1 ]
Yin, Sen [1 ]
Li, Zhao [1 ]
机构
[1] Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CRISPR-Cas9; AcrIIC1; Crystal structure; CLASSIFICATION;
D O I
10.1016/j.bbrc.2023.02.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems are bacterial and archaeal defense mechanisms against invading phages and viruses. To overcome these defenses, phages and other mobile genetic elements (MGEs) have evolved multiple anti-CRISPR proteins (Acrs) that can inhibit the function of CRISPR-Cas systems. The AcrIIC1 protein has been shown to be able to inhibit the activity of Neisseria meningitidis Cas9 (NmeCas9) in both bacteria and human cells. Here, we solve the structure of AcrIIC1 in complex with the HNH domain of NmeCas9 using X-ray crystallography. The structure shows that AcrIIC1 binds to the catalytic sites of the HNH domain, preventing it from accessing the DNA target. In addition, our biochemical data show that AcrIIC1 is a broad-spectrum in-hibitor targeting Cas9 enzymes from different subtypes. Taken together, the structure and biochemical analysis reveal the molecular mechanism of AcrIIC1-mediated Cas9 inhibition and provide new insights into regulatory tools for Cas9-based applications.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [31] CRISPR-Cas9 for Drug Discovery in Oncology
    Guichard, Sylvie M.
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 50: PLATFORM TECHNOLOGIES IN DRUG DISCOVERY AND VALIDATION, 2017, 50 : 61 - 85
  • [32] Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    Pawluk, April
    Staals, Raymond H. J.
    Taylor, Corinda
    Watson, Bridget N. J.
    Saha, Senjuti
    Fineran, Peter C.
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE MICROBIOLOGY, 2016, 1 (08)
  • [33] Application of CRISPR-Cas9 in eye disease
    Wu, Wenyi
    Tang, Luosheng
    D'Amore, Patricia A.
    Lei, Hetian
    EXPERIMENTAL EYE RESEARCH, 2017, 161 : 116 - 123
  • [34] CRISPR-Cas9 and the Promise of a Better Future
    Lucia Raposo, Vera
    EUROPEAN JOURNAL OF HEALTH LAW, 2019, 26 (04) : 308 - 329
  • [35] Structural and mechanistic insights into the inhibition of type I-F CRISPR-Cas system by anti-CRISPR protein AcrIF23
    Ren, Junhui
    Wang, Hao
    Yang, Lingguang
    Li, Feixue
    Wu, Yao
    Luo, Zhipu
    Chen, Zeliang
    Zhang, Yi
    Feng, Yue
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (07)
  • [36] CRISPR-Cas9 for treating hereditary diseases
    Mani, Indra
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 165 - 183
  • [37] Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6
    Li, Xinyi
    Wang, Chengxiang
    Peng, Ting
    Chai, Zongtao
    Ni, Duan
    Liu, Yaqin
    Zhang, Jian
    Chen, Ting
    Lu, Shaoyong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6108 - 6124
  • [38] Metabolic resistance to the inhibition of mitochondrial transcription revealed by CRISPR-Cas9 screen
    Mennuni, Mara
    Filograna, Roberta
    Felser, Andrea
    Bonekamp, Nina A.
    Giavalisco, Patrick
    Lytovchenko, Oleksandr
    Larsson, Nils-Goran
    EMBO REPORTS, 2022, 23 (01)
  • [39] The role of CRISPR-Cas9 and CRISPR interference technologies in the treatment of autoimmune diseases
    Khademi, Zahra
    Mottaghi-Dastjerdi, Negar
    Morad, Hamed
    Sahebkar, Amirhossein
    AUTOIMMUNITY REVIEWS, 2025, 24 (07)
  • [40] CRISPR-Cas9 for the Treatment of Transthyretin Cardiac Amyloidosis
    Panichella, Giorgia
    Aimo, Alberto
    CURRENT PHARMACEUTICAL DESIGN, 2023, 29 (39) : 3166 - 3169