Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1

被引:1
|
作者
Zhu, Yalan [1 ]
Yin, Sen [1 ]
Li, Zhao [1 ]
机构
[1] Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
CRISPR-Cas9; AcrIIC1; Crystal structure; CLASSIFICATION;
D O I
10.1016/j.bbrc.2023.02.065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems are bacterial and archaeal defense mechanisms against invading phages and viruses. To overcome these defenses, phages and other mobile genetic elements (MGEs) have evolved multiple anti-CRISPR proteins (Acrs) that can inhibit the function of CRISPR-Cas systems. The AcrIIC1 protein has been shown to be able to inhibit the activity of Neisseria meningitidis Cas9 (NmeCas9) in both bacteria and human cells. Here, we solve the structure of AcrIIC1 in complex with the HNH domain of NmeCas9 using X-ray crystallography. The structure shows that AcrIIC1 binds to the catalytic sites of the HNH domain, preventing it from accessing the DNA target. In addition, our biochemical data show that AcrIIC1 is a broad-spectrum in-hibitor targeting Cas9 enzymes from different subtypes. Taken together, the structure and biochemical analysis reveal the molecular mechanism of AcrIIC1-mediated Cas9 inhibition and provide new insights into regulatory tools for Cas9-based applications.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [31] Establishing the allosteric mechanism in CRISPR-Cas9
    Nierzwicki, Lukasz
    Arantes, Pablo Ricardo
    Saha, Aakash
    Palermo, Giulia
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (03)
  • [32] A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy
    Daisuke Matsumoto
    Hirokazu Tamamura
    Wataru Nomura
    Communications Biology, 3
  • [33] Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies
    Marino, Nicole D.
    Pinilla-Redondo, Rafael
    Csoergo, Balint
    Bondy-Denomy, Joseph
    NATURE METHODS, 2020, 17 (05) : 471 - 479
  • [34] A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy
    Matsumoto, Daisuke
    Tamamura, Hirokazu
    Nomura, Wataru
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [35] Structural and Dynamic Characterization of Thermophilic Cas9 Inhibition by AcrIIC1
    Knight, Alexa
    Belato, Helen
    D'Ordine, Alexandra
    Lisi, George
    PROTEIN SCIENCE, 2024, 33 : 190 - 190
  • [36] Novel structure of the anti-CRISPR protein AcrIE3 and its implication on the CRISPR-Cas inhibition
    Kim, Do Yeon
    Ha, Hyun Ji
    Park, Hyun Ho
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 722
  • [37] Mechanistic insights into the inhibition of the CRISPR-Cas surveillance complex by anti-CRISPR protein AcrIF13
    Wang, Hao
    Gao, Teng
    Zhou, Yu
    Ren, Junhui
    Guo, Junhua
    Zeng, Jianwei
    Xiao, Yu
    Zhang, Yi
    Feng, Yue
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (03)
  • [38] Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection
    Johnston, Robert K.
    Seamon, Kyle J.
    Saada, Edwin A.
    Podlevsky, Joshua D.
    Branda, Steven S.
    Timlin, Jerilyn A.
    Harper, Jason C.
    BIOSENSORS & BIOELECTRONICS, 2019, 141
  • [39] Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein
    Bhoobalan-Chitty, Yuvaraj
    Johansen, Thomas Baek
    Di Cianni, Nadia
    Peng, Xu
    CELL, 2019, 179 (02) : 448 - +
  • [40] Disabling Cas9 by an anti-CRISPR DNA mimic
    Shin, Jiyung
    Jiang, Fuguo
    Liu, Jun-Jie
    Bray, Nicolas L.
    Rauch, Benjamin J.
    Baik, Seung Hyun
    Nogales, Eva
    Bondy-Denomy, Joseph
    Corn, Jacob E.
    Doudna, Jennifer A.
    SCIENCE ADVANCES, 2017, 3 (07):