Two-Dimensional Gross-Pitaevskii Equation With Space-Time White Noise

被引:1
作者
de Bouard, Anne [1 ]
Debussche, Arnaud [2 ,3 ]
Fukuizumi, Reika [4 ]
机构
[1] Ecole Polytech, CMAP, CNRS, IP Paris, F-91128 Palaiseau, France
[2] Univ Rennes, CNRS, IRMAR UMR 6625, F-35000 Rennes, France
[3] Inst Univ France, Paris, France
[4] Tohoku Univ, Grad Sch Informat Sci, Res Ctr Pure & Appl Math, Sendai, Miyagi 9808579, Japan
关键词
GLOBAL WELL-POSEDNESS; SCHRODINGER-OPERATORS; DYNAMICS;
D O I
10.1093/imrn/rnac137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the two-dimensional stochastic Gross-Pitaevskii equation, which is a model to describe Bose-Einstein condensation at positive temperature. The equation is a complex Ginzburg-Landau equation with a harmonic potential and an additive space-time white noise. We study the global well posedness of the model using an inhomogeneous Wick renormalization due to the potential and prove the existence of an invariant measure.
引用
收藏
页码:10556 / 10614
页数:59
相关论文
共 25 条
  • [1] Invariant measure for the stochastic Ginzburg Landau equation
    Barton-Smith, M
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (01): : 29 - 52
  • [2] Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
    Blakie, P. B.
    Bradley, A. S.
    Davis, M. J.
    Ballagh, R. J.
    Gardiner, C. W.
    [J]. ADVANCES IN PHYSICS, 2008, 57 (05) : 363 - 455
  • [3] LONG TIME DYNAMICS FOR THE ONE DIMENSIONAL NON LINEAR SCHRODINGER EQUATION
    Burq, Nicolas
    Thomann, Laurent
    Tzvetkov, Nikolay
    [J]. ANNALES DE L INSTITUT FOURIER, 2013, 63 (06) : 2137 - 2198
  • [4] Da Prato G, 2003, ANN PROBAB, V31, P1900
  • [5] Two-dimensional Navier-Stokes equations driven by a space-time white noise
    Da Prato, G
    Debussche, A
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) : 180 - 210
  • [6] Da Prato G., 1996, PUBBLICAZIONE DIPART, V505
  • [7] Gradient estimates and maximal dissipativity for the Kolmogorov operator in Φ24
    Da Prato, Giuseppe
    Debussche, Arnaud
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25
  • [8] LONG TIME BEHAVIOR OF GROSS-PITAEVSKII EQUATION AT POSITIVE TEMPERATURE
    De Bouard, Anne
    Debussche, Arnaud
    Fukuizumi, Reika
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 5887 - 5920
  • [9] WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    LEVERMORE, CD
    [J]. PHYSICA D, 1994, 71 (03): : 285 - 318
  • [10] Stochastic dynamics of a trapped Bose-Einstein condensate
    Duine, RA
    Stoof, HTC
    [J]. PHYSICAL REVIEW A, 2002, 65 (01): : 25