Machine learning potential for Ab Initio phase transitions of zirconia

被引:7
作者
Deng, Yuanpeng [1 ]
Wang, Chong [1 ]
Xu, Xiang [1 ]
Li, Hui [1 ]
机构
[1] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent Mitigat Civil Engn Disasters, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; Molecular dynamics; Enhanced sampling; Phase transition; Zirconia; CRYSTAL-NUCLEATION; DYNAMICS; TRANSFORMATION; SIMULATIONS; MECHANISM;
D O I
10.1016/j.taml.2023.100481
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Zirconia has been extensively used in aerospace, military, biomedical and industrial fields due to its unusual combination of high mechanical, electrical and thermal properties. However, the fundamental and critical phase transition process of zirconia has not been well studied because of its difficult first-order phase transition with formidable energy barrier. Here, we generated a machine learning interatomic potential with ab initio accuracy to discover the mechanism behind all kinds of phase transition of zirconia at ambient pressure. The machine learning potential precisely characterized atomic interactions among all zirconia allotropes and liquid zirconia in a wide temperature range. We realized the challenging reversible first-order monoclinic-tetragonal and cubic -liquid phase transition processes with enhanced sampling techniques. From the thermodynamic information, we gave a better understanding of the thermal hysteresis phenomenon in martensitic monoclinic-tetragonal transition. The phase diagram of zirconia from our machine learning potential based molecular dynamics simulations corresponded well with experimental results.
引用
收藏
页数:7
相关论文
共 62 条
[41]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[42]   Choosing the right molecular machine learning potential [J].
Pinheiro, Max, Jr. ;
Ge, Fuchun ;
Ferre, Nicolas ;
Dral, Pavlo O. ;
Barbatti, Mario .
CHEMICAL SCIENCE, 2021, 12 (43) :14396-14413
[43]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[44]   Active learning of linearly parametrized interatomic potentials [J].
Podryabinkin, Evgeny V. ;
Shapeev, Alexander V. .
COMPUTATIONAL MATERIALS SCIENCE, 2017, 140 :171-180
[45]  
Schelling PK, 2001, J AM CERAM SOC, V84, P1609, DOI 10.1111/j.1151-2916.2001.tb00885.x
[46]   MARTENSITIC-TRANSFORMATION IN ZIRCONIA [J].
SUBBARAO, EC ;
MAITI, HS ;
SRIVASTAVA, KK .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1974, 21 (01) :9-40
[47]   OXYGEN SENSORS [J].
TAKEUCHI, T .
SENSORS AND ACTUATORS, 1988, 14 (02) :109-124
[48]   Enhancement of protein crystal nucleation by critical density fluctuations [J].
tenWolde, PR ;
Frenkel, D .
SCIENCE, 1997, 277 (5334) :1975-1978
[49]   NON-PHYSICAL SAMPLING DISTRIBUTIONS IN MONTE-CARLO FREE-ENERGY ESTIMATION - UMBRELLA SAMPLING [J].
TORRIE, GM ;
VALLEAU, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 23 (02) :187-199
[50]   PLUMED 2: New feathers for an old bird [J].
Tribello, Gareth A. ;
Bonomi, Massimiliano ;
Branduardi, Davide ;
Camilloni, Carlo ;
Bussi, Giovanni .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (02) :604-613