Development and validation of an optimal GATE model for proton pencil-beam scanning delivery

被引:3
作者
Asadi, Ali [1 ]
Akhavanallaf, Azadeh [2 ]
Hosseini, Seyed Abolfazl [1 ]
Vosoughi, Naser [1 ]
Zaidi, Habib [2 ,3 ,4 ,5 ,6 ]
机构
[1] Sharif Univ Technol, Dept Energy Engn, Tehran, Iran
[2] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, Geneva, Switzerland
[3] Univ Geneva, Neuroctr, Geneva, Switzerland
[4] Univ Groningen, Univ Med Ctr Groningen, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[5] Univ Southern Denmark, Dept Nucl Med, Odense, Denmark
[6] Geneva Univ Hosp, Div Nucl Med & Mol Imaging, CH-1211 Geneva, Switzerland
来源
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK | 2023年 / 33卷 / 04期
基金
瑞士国家科学基金会;
关键词
Proton therapy; Monte Carlo simulation; active scanning; AAPM TG-119; prostate; MONTE-CARLO SIMULATIONS; CARBON-ION THERAPY; DOSE-CALCULATION; OPTIMIZATION; CODE; DISTRIBUTIONS; PARAMETERS; EQUIVALENT; PLATFORM; TOPAS;
D O I
10.1016/j.zemedi.2022.10.008
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: To develop and validate a versatile Monte Carlo (MC)-based dose calculation engine to support MC-based dose verification of treatment planning systems (TPSs) and quality assurance (QA) workflows in proton therapy. Methods: The GATE MC toolkit was used to simulate a fixed horizontal active scan-based proton beam delivery (SIEMENS IONTRIS). Within the nozzle, two primary and secondary dose monitors have been designed to enable the comparison of the accuracy of dose estimation from MC simulations with respect to physical QA measurements. The developed beam model was validated against a series of commissioning measurements using pinpoint chambers and 2D array ionization chambers (IC) in terms of lateral profiles and depth dose distributions. Furthermore, beam delivery module and treatment planning has been validated against the literature deploying various clinical test cases of the AAPM TG-119 (c-shape phantom) and a prostate patient. Results: MC simulations showed excellent agreement with measurements in the lateral depth-dose parameters and spread-out Bragg peak (SOBP) characteristics within a maximum relative error of 0.95 mm in range, 1.83% in entrance to peak ratio, 0.27% in mean point-to-point dose difference, and 0.32% in peak location. The mean relative absolute difference between MC simulations and measurements in terms of absorbed dose in the SOBP region was 0.93% +/- 0.88%. Clinical phantom studies showed a good agreement compared to research TPS (relative error for TG-119 planning target volume PTV-D95 = 1.8%; and for prostate PTV-D95 = -0.6%). Conclusion: We successfully developed a MC model for the pencil beam scanning system, which appears reliable for dose verification of the TPS in combination with QA information, prior to patient treatment.
引用
收藏
页码:591 / 600
页数:10
相关论文
共 55 条
[1]   The FLUKA code: New developments and application to 1 GeV/n iron beams [J].
Aiginger, H ;
Andersen, V ;
Ballarini, F ;
Battistoni, G ;
Campanella, M ;
Carboni, M ;
Cerutti, F ;
Empl, A ;
Enghardt, W ;
Fasso, A ;
Ferrari, A ;
Gadioli, E ;
Garzelli, MV ;
Lee, K ;
Ottolenghi, A ;
Parodi, K ;
Pelliccioni, M ;
Pinsky, L ;
Ranft, J ;
Roesler, S ;
Sala, PR ;
Scannicchio, D ;
Smirnov, G ;
Sommerer, F ;
Wilson, T ;
Zapp, N .
SPACE LIFE SCIENCES: GROUND-BASED IRON-ION BIOLOGY AND PHYSICS, INCLUDING SHIELDING, 2005, 35 (02) :214-222
[2]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]   A beam model for focused proton pencil beams [J].
Almhagen, E. ;
Boersma, D. J. ;
Nystrom, H. ;
Ahnesjo, A. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 52 :27-32
[5]   On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams [J].
Andreo, Pedro .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (11) :N205-N215
[6]   Verification of patient-specific dose distributions in proton therapy using a commercial two-dimensional ion chamber array [J].
Arjomandy, Bijan ;
Sahoo, Narayan ;
Ciangaru, George ;
Zhu, Ronald ;
Song, Xiaofei ;
Gillin, Michael .
MEDICAL PHYSICS, 2010, 37 (11) :5831-5837
[7]   The FLUKA Code: An Accurate Simulation Tool For Particle Therapy [J].
Battistoni, Giuseppe ;
Bauer, Julia ;
Boehlen, Till T. ;
Cerutti, Francesco ;
Chin, Mary P. W. ;
Augusto, Ricardo Dos Santos ;
Ferrari, Alfredo ;
Ortega, Pablo G. ;
Kozlowska, Wioletta ;
Magro, Giuseppe ;
Mairani, Andrea ;
Parodi, Katia ;
Sala, Paola R. ;
Schoofs, Philippe ;
Tessonnier, Thomas ;
Vlachoudis, Vasilis .
FRONTIERS IN ONCOLOGY, 2016, 6
[8]   A treatment planning code for inverse planning and 3D optimization in hadrontherapy [J].
Bourhaleb, F. ;
Marchetto, F. ;
Attili, A. ;
Pitta, G. ;
Cirio, R. ;
Donetti, M. ;
Giordanengo, S. ;
Givehchi, N. ;
Iliescu, S. ;
Krengli, M. ;
La Rosa, A. ;
Massai, D. ;
Pecka, A. ;
Pardo, J. ;
Peroni, C. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2008, 38 (09) :990-999
[9]  
Brice DK, 1984, ICRU report 37
[10]  
Burigo L, 2018, Med Phys, V6