Thermal conductivity of glasses: first-principles theory and applications

被引:40
作者
Simoncelli, Michele [1 ]
Mauri, Francesco [2 ]
Marzari, Nicola [3 ,4 ]
机构
[1] Univ Cambridge, Cavendish Lab, Theory Condensed Matter Grp, Cambridge, England
[2] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy
[3] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, Lausanne, Switzerland
[4] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MAR, Lausanne, Switzerland
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
BOLTZMANN TRANSPORT-EQUATION; FUSED-SILICA; 1ST PRINCIPLES; TEMPERATURE; QUARTZ; DYNAMICS; PHONONS; SYSTEMS; MODEL; HEAT;
D O I
10.1038/s41524-023-01033-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity kappa(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the kappa(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce kappa(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of kappa(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.
引用
收藏
页数:22
相关论文
共 150 条
[1]   Thermal conductivity of fused quartz and quartz ceramic at high temperatures and high pressures [J].
Abdulagatov, IM ;
Emirov, SN ;
Tsomaeva, TA ;
Gairbekov, KA ;
Askerov, SY ;
Magomedova, NA .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2000, 61 (05) :779-787
[2]   THERMAL-CONDUCTIVITY OF GLASSES - THEORY AND APPLICATION TO AMORPHOUS SI [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW LETTERS, 1989, 62 (06) :645-648
[3]   THERMAL-CONDUCTIVITY OF DISORDERED HARMONIC SOLIDS [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW B, 1993, 48 (17) :12581-12588
[4]   Diffusons, locons and propagons: character of atomic vibrations in amorphous Si [J].
Allen, PB ;
Feldman, JL ;
Fabian, J ;
Wooten, F .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (11-12) :1715-1731
[5]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[6]   ANOMALOUS LOW-TEMPERATURE THERMAL PROPERTIES OF GLASSES AND SPIN GLASSES [J].
ANDERSON, PW ;
HALPERIN, BI ;
VARMA, CM .
PHILOSOPHICAL MAGAZINE, 1972, 25 (01) :1-&
[7]   Glass in Architecture [J].
Arbab, Mehran ;
Finley, James J. .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2010, 1 (01) :118-129
[8]   Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe [J].
Aseginolaza, Unai ;
Bianco, Raffaello ;
Monacelli, Lorenzo ;
Paulatto, Lorenzo ;
Calandra, Matteo ;
Mauri, Francesco ;
Bergara, Aitor ;
Errea, Ion .
PHYSICAL REVIEW LETTERS, 2019, 122 (07)
[9]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[10]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)